首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5436篇
  免费   587篇
  国内免费   344篇
电工技术   84篇
综合类   280篇
化学工业   1389篇
金属工艺   1163篇
机械仪表   287篇
建筑科学   481篇
矿业工程   61篇
能源动力   48篇
轻工业   130篇
水利工程   47篇
石油天然气   80篇
武器工业   65篇
无线电   857篇
一般工业技术   992篇
冶金工业   227篇
原子能技术   18篇
自动化技术   158篇
  2024年   11篇
  2023年   113篇
  2022年   157篇
  2021年   199篇
  2020年   176篇
  2019年   183篇
  2018年   140篇
  2017年   197篇
  2016年   196篇
  2015年   175篇
  2014年   272篇
  2013年   410篇
  2012年   315篇
  2011年   357篇
  2010年   291篇
  2009年   323篇
  2008年   272篇
  2007年   397篇
  2006年   389篇
  2005年   283篇
  2004年   265篇
  2003年   198篇
  2002年   170篇
  2001年   155篇
  2000年   131篇
  1999年   105篇
  1998年   68篇
  1997年   59篇
  1996年   71篇
  1995年   58篇
  1994年   41篇
  1993年   35篇
  1992年   29篇
  1991年   32篇
  1990年   16篇
  1989年   22篇
  1988年   15篇
  1987年   13篇
  1986年   4篇
  1985年   3篇
  1984年   5篇
  1983年   5篇
  1982年   5篇
  1981年   3篇
  1979年   1篇
  1976年   1篇
  1951年   1篇
排序方式: 共有6367条查询结果,搜索用时 15 毫秒
1.
Ammonia is considered as a promising hydrogen or energy carrier. Ammonia absorption or adsorption is an important aspect for both ammonia removal, storage and separation applications. To these ends, a wide range of solid and liquid sorbents have been investigated. Among these, the deep eutectic solvent (DES) is emerging as a promising class of ammonia absorbers. Herein, we report a novel type of DES, i.e., metal-containing DESs for ammonia absorption. Specifically, the NH3 absorption capacity is enhanced by ca. 18.1–36.9% when a small amount of metal chlorides, such as MgCl2, MnCl2 etc., are added into a DES composed of resorcinol (Res) and ethylene glycol (EG). To our knowledge, the MgCl2/Res/EG (0.1:1:2) DES outperforms most of the reported DESs. The excellent NH3 absorption performances of metal–containing DESs have been attributed to the synergy of Lewis acid–base and hydrogen bonding interactions. Additionally, good reversibility and high NH3/CO2 selectivity are achieved over the MgCl2/Res/EG (0.1:1:2) DES, which enables it to be a potential NH3 absorber for further investigations.  相似文献   
2.
Conjugated polymers have emerged as a promising class of organic photocatalysts for photocatalytic hydrogen evolution from water splitting due to their adjustable chemical structures and electronic properties. However, developing highly efficient organic polymer photocatalysts with high photocatalytic activity for hydrogen evolution remains a significant challenge. Herein, we present an efficient approach to enhance the photocatalytic performance of linear conjugated polymers by modifying the surface chemistry via introducing a hydrophilic adenine group into the side chain. The adenine unit with five nitrogen atoms could enhance the interaction between the surface of polymer photocatalyst and water molecules through the formation of hydrogen bonding, which improves the hydrophilicity and dispersity of the resulting polymer photocatalyst in the photocatalytic reaction solution. In addition, the strong electron-donating ability of adenine group with plentiful nitrogen atoms could promote the separation of light-induced electrons and holes. As a result, the adenine-functionalized conjugated polymer PF6A-DBTO2 shows a high photocatalytic activity with a hydrogen evolution rate (HER) of 25.21 mmol g?1 h?1 under UV-Vis light irradiation, which is much higher than that of its counterpart polymer PF6-DBTO2 without the adenine group (6.53 mmol g?1 h?1). More importantly, PF6A-DBTO2 without addition of a Pt co-catalyst also exhibits an impressive HER of 21.93 mmol g?1 h?1 under visible light (λ > 420 nm). This work highlights that it is an efficient strategy to improve the photocatalytic activity of conjugated polymer photocatalysts by the modification of surface chemistry.  相似文献   
3.
The transient liquid phase (TLP) bonding of CoCuFeMnNi high entropy alloy (HEA) was studied. The TLP bonding was performed using AWS BNi-2 interlayer at 1050 °C with the TLP bonding time of 20, 60, 180 and 240 min. The effect of bonding time on the joint microstructure was characterized by SEM and EDS. Microstructural results confirmed that complete isothermal solidification occurred approximately at 240 min of bonding time. For samples bonded at 20, 60 and 180 min, athermal solidification zone was formed in the bonding area which included Cr-rich boride and Mn3Si intermetallic compound. For all samples, the γ solid solution was formed in the isothermal solidification zone of the bonding zone. To evaluate the effect of TLP bonding time on mechanical properties of joints, the shear strength and micro-hardness of joints were measured. The results indicated a decrement of micro-hardness in the bonding zone and an increment of micro-hardness in the adjacent zone of joints. The minimum and maximum values of shear strength were 100 and 180 MPa for joints with the bonding time of 20 and 240 min, respectively.  相似文献   
4.
Reliable joints of Ti3SiC2 ceramic and TC11 alloy were diffusion bonded with a 50 μm thick Cu interlayer. The typical interfacial structure of the diffusion boned joint, which was dependent on the interdiffusion and chemical reactions between Al, Si and Ti atoms from the base materials and Cu interlayer, was TC11/α-Ti + β-Ti + Ti2Cu + TiCu/Ti5Si4 + TiSiCu/Cu(s, s)/Ti3SiC2. The influence of bonding temperature and time on the interfacial structure and mechanical properties of Ti3SiC2/Cu/TC11 joint was analyzed. With the increase of bonding temperature and time, the joint shear strength was gradually increased due to enhanced atomic diffusion. However, the thickness of Ti5Si4 and TiSiCu layers with high microhardness increased for a long holding time, resulting in the reduction of bonding strength. The maximum shear strength of 251 ± 6 MPa was obtained for the joint diffusion bonded at 850 °C for 60 min, and fracture primarily occurred at the diffusion layer adjacent to the Ti3SiC2 substrate. This work provided an economical and convenient solution for broadening the engineering application of Ti3SiC2 ceramic.  相似文献   
5.
The joining of liquid-phase sintered SiC (LPS-SiC) ceramics was conducted using spark plasma sintering (SPS), through solid state diffusion bonding, with Ti-metal foil as a joining interlayer. Samples were joined at 1400 °C, under applied pressures of either 10 or 30 MPa, and with different atmospheres (argon, Ar, vs. vacuum). It was demonstrated that the shear strength of the joints increased with an increase in the applied joining pressure. The joining atmosphere also affected on both the microstructure and shear strength of the SiC joints. The composition and microstructure of the interlayer were examined to understand the mechanism. As a result, a SiC-SiC joining with a good mechanical performance could be achieved under an Ar environment, which in turn could provide a cost-effective approach and greatly widen the applications of SiC ceramic components with complex shape.  相似文献   
6.
《Ceramics International》2022,48(6):8025-8030
In order to meet the high demand for joining ceramic/superalloy composite structure in extreme environments, a novel high-temperature resistant adhesion technique was developed for joining ZrO2 and Inconel 625 by applying an aluminum phosphate emulsion/zirconium sol based adhesive. With increasing temperature, a series of reactions occurred in adhesive, and its high-temperature bonding was attributed to the formation of a composite structure containing various ceramics and intermetallics. The adhesive after RT curing could find direct applications in extreme environments, and provide bonding strength no less than 2.5 MPa in the temperature range of RT-1100 °C. The bonding strength was higher than 4 MPa in the temperature range of 800–1000 °C, which was further attributed to the formation of an effective CTE-gradient relationship among ZrO2, adhesive and Inconel 625, as well as the interfacial reactions between the two substrates. The work broadened the application of adhesion technique and brought new ideas for joining dissimilar engineering materials.  相似文献   
7.
Numerical simulation and experiments were introduced to develop AA4045/AA3003 cladding billets with different clad-ratios. The temperature fields, microstructures and mechanical properties near interface were investigated in detail. The results show that cladding billets with different clad-ratios were fabricated successfully. Si and Mn elements diffused across the bonding interface and formed diffusion layer. With the increase of clad-layer thickness, the interfacial region transforms from semisolid–solid state to liquid–solid state and the diffusion layer increased from 10 to 25 μm. The hardness at interface is higher than that of AA3003 side but lower than that of the other side. The bonding strength increased with the clad-layer thickness, attributing to solution strengthening due to elements diffusion. The cladding billets were extruded into clad pipe by indirect extrusion process after homogenization. The clad pipe remained the interfacial characteristics of as-cast cladding billet and the heredity of clad-ratio during deformation was testified.  相似文献   
8.
基于微电子机械系统(MEMS)工艺,提出一种多层圆片堆叠的THz硅微波导结构及其制作方法。为了验证该结构在制作THz无源器件中的优势,基于6层圆片堆叠的硅微波导结构,设计了一种中心频率365 GHz、带宽80 GHz的功率分配/合成结构,并对其进行了仿真。研究了制作该结构的工艺流程,攻克了工艺过程中的关键技术,包括硅深槽刻蚀技术和多层热压键合技术,并给出了工艺结果。最终实现了多层圆片堆叠功率分配/合成结构的工艺制作和测试。测试结果表明,尽管样品的插入损耗较仿真值增加3 dB左右,考虑到加工误差和夹具损耗等情况,样品主要技术指标与设计值较为一致。  相似文献   
9.
采用累积叠轧焊+中间退火法复合轧制1060Al/Fe基非晶多层铝合金复合板材。利用光学显微镜、扫描电镜、X-衍射分析仪以及拉伸试验机分析Al基复合材料的微观组织结构变化、断口形貌、物相组成以及力学性能。结果表明:Fe基非晶复合材料的增强体在300 ℃中间退火过程中发生部分晶化,在累积变形轧制过程中发生破碎,并随着变形道次的增加,破碎程度随之增大;复合板前6道次的累积轧制变形出现了明显的加工软化现象,并且随着变形道次的增加,其加工软化的效果愈明显;随着累积轧制变形道次增加,Al基复合材料的力学性能发生了明显的变化,第2道次轧制变形后屈服强度与抗拉强度达到了最大值为140 MPa和156 MPa,伸长率为5.53%,达到最佳综合性能。  相似文献   
10.
The formation of a monolithic part during diffusion bonding is accompanied by the diffusion of atoms across the bonding planes. At sufficient low roughness, it mainly depends on the temperature and dwell time. At the same time, the diffusion process competes against grain growth. By adjusting an appropriate level of bearing pressure, it is possible to control deformation taking into account additional parameters resulting from mechanical microstructures and the design and aspect ratio of the part. Furthermore, material properties, such as the content of alloying elements, the degree of cold work hardening and the grain size, have an impact on diffusion and deformation behavior. Also the surface condition of mating surfaces is important to diffusion kinetics and the quality of the joint. Especially passivation layers of corrosion‐resistant alloys, such as stainless steels and nickel‐based alloys, impair diffusion. In contrast to this, cold work hardening at low depth below the surface, e. g. by means of a blasting processes, may facilitate formation of a good bond and help to limit grain size. For oxide dispersion‐strengthened materials, additional impacts on diffusion bonding behavior applies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号