首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   61305篇
  免费   5025篇
  国内免费   2687篇
电工技术   886篇
综合类   3238篇
化学工业   27161篇
金属工艺   5780篇
机械仪表   678篇
建筑科学   1455篇
矿业工程   888篇
能源动力   5569篇
轻工业   5436篇
水利工程   270篇
石油天然气   6467篇
武器工业   380篇
无线电   1475篇
一般工业技术   5350篇
冶金工业   2523篇
原子能技术   823篇
自动化技术   638篇
  2024年   95篇
  2023年   1398篇
  2022年   1825篇
  2021年   2164篇
  2020年   2231篇
  2019年   2131篇
  2018年   1807篇
  2017年   1997篇
  2016年   1783篇
  2015年   1720篇
  2014年   2817篇
  2013年   3389篇
  2012年   3736篇
  2011年   4185篇
  2010年   3185篇
  2009年   3507篇
  2008年   3044篇
  2007年   3763篇
  2006年   3421篇
  2005年   2959篇
  2004年   2636篇
  2003年   2395篇
  2002年   1983篇
  2001年   1828篇
  2000年   1575篇
  1999年   1190篇
  1998年   1036篇
  1997年   821篇
  1996年   802篇
  1995年   629篇
  1994年   564篇
  1993年   457篇
  1992年   379篇
  1991年   294篇
  1990年   252篇
  1989年   153篇
  1988年   117篇
  1987年   113篇
  1986年   79篇
  1985年   82篇
  1984年   86篇
  1983年   36篇
  1982年   57篇
  1981年   39篇
  1980年   42篇
  1979年   21篇
  1978年   26篇
  1977年   19篇
  1975年   22篇
  1951年   36篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Eliminating the gold preg-robbing effect of carbonaceous matter in carbonaceous gold ores is crucial for gold leaching. In this study, suspension oxidation roasting was proposed to accelerate the decarbonization of carbonaceous gold ore. The characteristics of oxidation reaction process and gas release were analyzed by TG-DTA-FTIR. The phase transformation and microstructure evolution of samples during roasting were analyzed by XRD, SEM and BET. The results show that the gold preg-robbing effect was eliminated after the gasification of carbonaceous matter, and the CaO generated by decomposition of carbonates can effectively capture the SO2. After roasting for 75 min at 650 °C in a 20% O2 atmosphere, the total carbon removal rate reached 99.42%, the distribution of exposed gold increased from 28.85% to 77.10% and the gold leaching efficiency increased from 4.55% to 84.83%. In addition, about 70% sulfur was mainly fixed in the roasted products in the form of sulfate. Therefore, the suspension oxidation roasting process is an efficient and clean pretreatment method for carbonaceous gold ores.  相似文献   
2.
The present work addresses the potentialities of Pt–Ru nanoparticles deposited on a graphene oxide (RGO) and TiO2 composite support towards electrochemical oxidation of ethanol in acidic media relevant for fuel cell applications. To immobilize platinum–ruthenium bimetallic nanoparticles on to an RGO-TiO2 nanohybrid support a simple solution-phase chemical reduction method is utilized. An examination using electron microscopy and energy dispersive X-ray spectroscopy (EDS) indicated that Pt–Ru particles of 4–8 nm in diameter are dispersed on RGO-TiO2 composite support. The corresponding Pt–Ru/RGO-TiO2 nanocomposite electrocatalyst was studied for the electrochemical oxidation of ethanol in acidic media. Compared to the commercial Pt–Ru/C and Pt/C catalysts, Pt–Ru/RGO-TiO2 nanocomposite yields higher mass-specific activity of about 1.4 and 3.2 times, respectively towards ethanol oxidation reaction (EOR). The synergistic boosting provided by RGO-TiO2 composite support and Pt–Ru ensemble together contributed to the observed higher EOR activity and stability to Pt–Ru/RGO-TiO2 nanocomposite compared with other in-house synthesized Pt–Ru/RGO, Pt/RGO and commercial Pt–Ru/C and Pt/C electrocatalysts. Further optimization of RGO-TiO2 composite support provides opportunity to deposit many other types of metallic nanoparticles onto it for fuel cell electrocatalysis applications.  相似文献   
3.
The development of cost-effective bifunctional catalysts with excellent performance and good stability is of great significance for overall water splitting. In this work, NiFe layered double hydroxides (LDHs) nanosheets are prepared on nickel foam by hydrothermal method, and then Ni2P(O)–Fe2P(O)/CeOx nanosheets are in situ synthesized by electrodeposition and phosphating on NiFe LDHs. The obtained self-supporting Ni2P(O)–Fe2P(O)/CeOx exhibit excellent catalytic performances in alkaline solution due to more active sites and fast electron transport. When the current density is 10 mA cm?2, the overpotential of hydrogen evolution reaction and oxygen evolution reaction are 75 mV and 268 mV, respectively. In addition, driven by two Ni2P(O)–Fe2P(O)/CeOx electrodes, the alkaline battery can reach 1.45 V at 10 mA cm?2.  相似文献   
4.
Electrolysis of water for producing hydrogen instead of traditional fossil fuels is one of the most promising methods to alleviate environmental pollution and energy crisis. In this work, Fe and F ion co-doped Ni3S2 nanoarrays grown on Ni foam substrate were prepared by typical hydrothermal and sulfuration processes for the first time. Density functional theory (DFT) calculation demonstrate that the adsorption energy of the material to water is greatly enhanced due to the doping of F and Fe, which is conducive to the formation of intermediate species and the improvement of electrochemical performance of the electrode. The adsorption energy of anions (F and S) and cations (Fe and Ni) to water in each material was also calculated, and the results showed that F ion showed the most optimal adsorption energy of water, which proved that the doping of F and Fe was beneficial to improve the electrochemical performance of the electrode. It is worth noting that the surface of Fe–F–Ni3S2 material will undergo reconstruction during the process of water oxidation reaction and urea oxidation reaction, and amorphous oxides or hydroxides in situ would be formed on the surface of electrode, which are the real active species.  相似文献   
5.
The combustion characteristics of ammonia/methanol mixtures were investigated numerically in this study. Methanol has a dramatic promotive effect on the laminar burning velocity (LBV) of ammonia. Three mechanisms from literature and another four self-developed mechanisms constructed in this study were evaluated using the measured laminar burning velocities of ammonia/methanol mixtures from Wang et al. (Combust.Flame. 2021). Generally, none of the selected mechanisms can precisely predict the measured laminar burning velocities at all conditions. Aiming to develop a simplified and reliable mechanism for ammonia/methanol mixtures, the constructed mechanism utilized NUI Galway mechanism (Combust.Flame. 2016) as methanol sub-mechanism and the Otomo mechanism (Int. J. Hydrogen. Energy. 2018) as ammonia sub-mechanism was optimized and reduced. The reduced mechanism entitled ‘DNO-NH3’, can accurately reproduce the measured laminar burning velocities of ammonia/methanol mixtures under all conditions. A reaction path analysis of the ammonia/methanol mixtures based on the DNO-NH3 mechanism shows that methanol is not directly involved in ammonia oxidation, instead, the produced methyl radicals from methanol oxidization contribute to the dehydrogenation of ammonia. Besides, NOx emission analysis demonstrates that 60% methanol addition results in the highest NOx emissions. The most important reactions dominating the NOx consumption and production are identified in this study.  相似文献   
6.
Highly-efficient and stable non-noble metal electrocatalysts for overcoming the sluggish kinetics of oxygen evolution reaction (OER) is urgent for water electrolysis. Biomass-derived biochar has been considered as promising carbon material because of its advantages such as low-cost, renewable, simple preparation, rich structure, and easy to obtain heteroatom by in-situ doping. Herein, Ni2P–Fe2P bimetallic phosphide spherical nanocages encapsulated in N/P-doped pine needles biochar is prepared via a simple two-step pyrolysis method. Benefiting from the maximum synergistic effects of bimetallic phosphide and biochar, high conductivity of biochar encapsulation, highly exposed active sites of Ni2P–Fe2P spherical nanocages, rapid mass transfer in porous channels with large specific surface area, and the promotion in adsorption of reaction intermediates by high-level heteroatom doping, the (Ni0.75Fe0.25)2P@NP/C demonstrates excellent OER activity with an overpotential of 250 mV and a Tafel slope of 48 mV/dec at 10 mA/cm2 in 1 M KOH. Also it exhibits a long-term durability in 10 h electrolysis and its activity even improves during the electrocatalytic process. The present work provides a favorable strategy for the inexpensive synthesis of biochar-based transition metal electrocatalysts toward OER, and improves the water electrolysis for hydrogen production.  相似文献   
7.
The present research work concentrates on viscous dissipation, Dufour, and heat source on an unsteady magnetohydrodynamics natural convective flow of a viscous, incompressible, and electrically conducting fluid past an exponentially accelerated infinite vertical plate in the existence of a strong magnetic field. The presence of the Hall current induces a secondary flow in the problem. The distinguishing features of viscous dissipation and heat flux produced due to gradient of concentration included in the model along with heat source as they are known to arise in thermal-magnetic polymeric processing. The flow equations are discretized implicitly using the finite difference method and solved using MATLAB fsolve routine. Numerical values of the primary and secondary velocities, temperature, concentration, skin friction, Nusselt number, and Sherwood number are illustrated and presented via graphs and tables for various pertinent parametric values. The Dufour effect was observed to strengthen the velocity and temperature profile in the flow domain. In contrast, due to the impact of viscous dissipation, the local Nusselt number reduces. The study also reveals that the inclusion of the chemical reaction term augments the mass transfer rate and diminishes the heat transfer rate at the plate.  相似文献   
8.
Oxygen evolution reaction (OER) plays a decisive role in electrolytic water splitting. However, it is still challengeable to develop low-cost and efficient OER electrocatalysts. Herein, we present a combination strategy via heteroatom doping, hetero-interface engineering and introducing conductive skeleton to synthesize a hybrid OER catalyst of CNT-interconnected iron-doped NiP2/Ni2P (Fe-(NiP2/Ni2P)@CNT) heterostructural nanoflowers by a simple hydrothermal reaction and subsequent phosphorization process. The optimized Fe-(NiP2/Ni2P)@CNT catalyst delivers an ultralow Tafel slope of 46.1 mV dec?1 and overpotential of 254 mV to obtain 10 mA cm?2, which are even better than those of commercial OER catalyst RuO2. The excellent OER performance is mainly attributed to its unique nanoarchitecture and the synergistic effects: the nanoflowers constructed by a 2D-like nanosheets guarantee large specific area and abundant active sites; the highly conductive CNT skeleton and the electronic modulation by the heterostructural NiP2/Ni2P interface and the hetero-atom doping can improve the catalytic activity; porous nanostructure benefits electrolyte penetration and gas release; most importantly, the rough surface and rich defects caused by phosphorization process can further enhance the OER performance. This work provides a deep insight to boost catalytic performance by heteroatom doping and interface engineering for water splitting.  相似文献   
9.
The speed of the oxygen evolution reaction seriously affects the hydrogen production efficiency of water electrolysis. Hence it is crucial to develop efficient and durable OER electrocatalysts. Construction of heterojunction catalysts is also one of the strategies to develop efficient catalysts. In this paper, a pea-like Cu/Cu2S–C3 Mott?Schottky electrocatalyst was self-constructed by vapor deposition, while CF (copper foam) was used as substrate material and copper source, and thiourea was served as sulfur source. The built-in electric field is formed at the metal-semiconductor interface, which endows it with promising electrocatalytic performance. As the working electrode, the overpotentials of Cu/Cu2S–C3 required to reach the current density of 10 and 50 mA cm?2 were about 170 and 335 mV. The impact of the Mott-Schottky structure on the catalyst was also reflected in stability. The i-t tests of the sample Cu/Cu2S–C3 were carried out under 10 and 60 mA cm?2 and performed well.  相似文献   
10.
Effects of different drying methods and different addition levels of eggplant (EP) on product quality of low-fat patties (LFPs) were investigated during storage. EP was dried in an oven dryer at 60 °C or a freeze dryer at −50 °C. LFPs were prepared by replacing with 1.5% soy protein isolate (SPI). Six treatments were used in this study: (1) control (CTL), without addition of EP; (2) reference (REF), 0.1% ascorbic acid; (3) O1, 0.25% oven-dried (OD) EP; (4) O2, 0.5% ODEP; (5) F1, 0.25% freeze-dried (FD) EP; and (6) F2, 0.5% FDEP. Redness (a*) and lightness (L*) values in LFPs added with EP were lower than those of others (p < 0.05) and decreased with increasing storage time. Yellowness (b*) values of cooked patties were increased during storage time (p < 0.05), with control having the highest value. The addition of EP or ascorbic acid into LFPs lowered microbial counts than control (p < 0.05). Thiobarbituric acid reactive substances (TBARS) was increased during storage, with REF having the lowest value, and patties added with EP had lower TBARS values than control during storage. Volatile basic nitrogen (VBN, mg%) contents of all patties also increased during storage time with O2 and F2 having lower values than control. Therefore, EP might have potential as a natural antioxidant in meat products during storage.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号