首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11214篇
  免费   1201篇
  国内免费   758篇
电工技术   474篇
技术理论   2篇
综合类   790篇
化学工业   3226篇
金属工艺   878篇
机械仪表   349篇
建筑科学   595篇
矿业工程   170篇
能源动力   380篇
轻工业   790篇
水利工程   179篇
石油天然气   256篇
武器工业   97篇
无线电   1071篇
一般工业技术   2286篇
冶金工业   396篇
原子能技术   184篇
自动化技术   1050篇
  2024年   2篇
  2023年   290篇
  2022年   300篇
  2021年   496篇
  2020年   471篇
  2019年   482篇
  2018年   435篇
  2017年   461篇
  2016年   386篇
  2015年   371篇
  2014年   550篇
  2013年   776篇
  2012年   625篇
  2011年   748篇
  2010年   541篇
  2009年   593篇
  2008年   561篇
  2007年   634篇
  2006年   585篇
  2005年   504篇
  2004年   483篇
  2003年   454篇
  2002年   377篇
  2001年   277篇
  2000年   268篇
  1999年   220篇
  1998年   154篇
  1997年   170篇
  1996年   162篇
  1995年   124篇
  1994年   112篇
  1993年   103篇
  1992年   79篇
  1991年   68篇
  1990年   64篇
  1989年   48篇
  1988年   37篇
  1987年   23篇
  1986年   15篇
  1985年   29篇
  1984年   21篇
  1983年   27篇
  1982年   24篇
  1981年   6篇
  1980年   6篇
  1979年   2篇
  1976年   2篇
  1975年   2篇
  1972年   1篇
  1959年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
《Ceramics International》2021,47(19):27479-27486
Threshold switching (TS) devices have evolved as one of the most promising elements in memory circuit due to their important significance in suppressing crosstalk current in the crisscross array structure. However, the issue of high threshold voltage (Vth) and low stability still restricts their potential applications. Herein, the vanadium oxide (VOx) films deposited by the pulsed laser deposition (PLD) method are adopted as the switching layer to construct the TS devices. The TS devices with Pt/VOx/Pt/PI structure exhibit non-polar, electroforming-free, and volatile TS characteristics with an ultralow Vth (+0.48 V/−0.48 V). Besides that, the TS devices also demonstrates high stability, without obviously performance degradations after 350 cycles of endurance measurements. Additionally, the transition mechanism is mainly attributed to the synergistic effect of metal-insulator transition of VO2 and oxygen vacancies. Furthermore, the nonvolatile bipolar resistance switching behaviors can be obtained by changing oxygen pressure during the deposition process for switching films. This work demonstrates that vanadium oxide film is a good candidate as switching layer for applications in the TS devices and opens an avenue for future electronics.  相似文献   
2.
为了提升钢纤维-砂浆界面的黏结性能,采用9种基于硅烷的表面处理剂对钢纤维进行浸渍处理并高温固化成膜;埋置于水泥砂浆圆柱体试块中,开展单根纤维拉拔试验,获得拉拔荷载-位移曲线. 试验结果表明,采用不同的硅烷涂层对钢纤维进行表面改性,可以不同程度地改善钢纤维-砂浆界面的黏结性能;拉拔峰值荷载最高增加5.75倍,拉拔能耗最多增加2.48倍. 硅烷Z6011和Z6020及复合涂层能够较大幅度地提升界面黏结强度,主要增加钢纤维与砂浆界面的化学黏结力;硅烷Z6030和Z6040及复合涂层对界面黏结强度的提升幅度相对较小,主要增加界面滑移摩擦力. 采用扫描电子显微镜(SEM)研究界面黏结性能的提升机理,发现硅烷涂层使得界面过渡区的微观结构更致密,显著提升了钢纤维-砂浆之间的黏结性能.  相似文献   
3.
Hypertension induces renal fibrosis or tubular interstitial fibrosis, which eventually results in end-stage renal disease. Epithelial-to-mesenchymal transition (EMT) is one of the underlying mechanisms of renal fibrosis. Though previous studies showed that Ecklonia cava extracts (ECE) and dieckol (DK) had inhibitory action on angiotensin (Ang) I-converting enzyme, which converts Ang I to Ang II. It is known that Ang II is involved in renal fibrosis; however, it was not evaluated whether ECE or DK attenuated hypertensive nephropathy by decreasing EMT. In this study, the effect of ECE and DK on decreasing Ang II and its down signal pathway of angiotensin type 1 receptor (AT1R)/TGFβ/SMAD, which is related with the EMT and restoring renal function in spontaneously hypertensive rats (SHRs), was investigated. Either ECE or DK significantly decreased the serum level of Ang II in the SHRs. Moreover, the renal expression of AT1R/TGFβ/SMAD was decreased by the administration of either ECE or DK. The mesenchymal cell markers in the kidney of SHRs was significantly decreased by ECE or DK. The fibrotic tissue of the kidney of SHRs was also significantly decreased by ECE or DK. The ratio of urine albumin/creatinine of SHRs was significantly decreased by ECE or DK. Overall, the results of this study indicate that ECE and DK decreased the serum levels of Ang II and expression of AT1R/TGFβ/SMAD, and then decreased the EMT and renal fibrosis in SHRs. Furthermore, the decrease in EMT and renal fibrosis could lead to the restoration of renal function. It seems that ECE or DK could be beneficial for decreasing hypertensive nephropathy by decreasing EMT and renal fibrosis.  相似文献   
4.
《Ceramics International》2021,47(21):29681-29687
Inorganic piezoelectric ceramic composite is the potential sensing element for long-term structural health monitoring due to its excellent durability and compatibility. In this study, a Ceramicrete-based piezoelectric composite is proposed preliminarily, in which the magnesium potassium phosphate cement is used as the matrix and the lead zirconate titanate particle is utilized as the functional phase. Piezoelectric properties test and microstructure analysis are performed to evaluate the testing samples. Results show that the piezoelectric performance of the composite increase with the increase of piezoelectric ceramic particle size. The value of the piezoelectric strain factor (d33) can reach 83.8 pC/N, while the corresponding piezoelectric voltage factor (g33) is 50.1 × 10-3 V•m/N at the 50th day after polarization. Microstructure analysis illustrates that the interfacial transition zone (ITZ) between the matrix and the particles is dense. Moreover, the influence of aging on the composite is attributed to the continuous hydration after polarization. It indicates that the composites have a higher piezoelectric performance, which can be regarded as a promising sensing element material.  相似文献   
5.
The glass transition temperature (Tg) is a key parameter to investigate for application in nuclear waste immobilization in borosilicate glasses. Tg for several glasses containing iodine (I) has been measured in order to determine the I effect on Tg. Two series of glass composition (ISG and NH) containing up to 2.5 mol% I and synthesized under high pressure (0.5 to 1.5 GPa) have been investigated using differential scanning calorimetry (DSC). The I local environment in glasses has been determined using X-ray photoelectron spectroscopy and revealed that I is dissolved under its iodide form (I). Results show that Tg is decreased with the I addition in the glass in agreement with previous results. We also observed that this Tg decrease is a strong function of glass composition. For NH, 2.5 mol% I induces a decrease of 24°C in Tg, whereas for ISG, 1.2 mol% decreases the Tg by 64°C. We interpret this difference as the result of the I dissolution mechanism and its effect on the polymerization of the boron network. The I dissolution in ISG is accompanied by a depolymerization of the boron network, whereas it is the opposite in NH. Although ISG corresponds to a standardized glass, for the particular case of I immobilization it appears less adequate than NH considering that the decrease in Tg for NH is small in comparison to ISG.  相似文献   
6.
The effect of tacticity on the interfacial region between poly(methyl methacrylate) (PMMA) and silica in a PMMA/silica nanocomposite was investigated by differential scanning calorimetry (DSC), Fourier-transform infrared spectroscopy (FT-IR), and X-ray diffraction (XRD). The glass transition temperature (Tg) values of the syndiotactic (st-) and atactic (at-) PMMA/silica nanocomposites are higher than those of the neat PMMA. Conversely, the Tg of the isotactic (it-) PMMA/silica nanocomposite is slightly higher than that of the neat it-PMMA. DSC and XRD results suggest that the restriction of the PMMA chain mobility in the silica nanoparticle interfacial region heightens as the syndiotactic content increases. FT-IR results show that this phenomenon is caused by the interaction between the carbonyl group of PMMA and the silanol group on the silicon dioxide surface. Therefore, it can be concluded that the syndiotactic-rich PMMA has a significantly different molecular mobility from that of the neat PMMA in the interfacial region with silica nanoparticle surface than isotactic-rich PMMA.  相似文献   
7.
A strategy that constructs the morphotropic phase boundary and manipulates the domain structure has been used to design the component of 0.96[Bi0.5(Na0.84K0.16)0.5Ti(1-x)NbxO3]-0.04SrTiO3 (BNKT-4ST-100xNb) to enhance the strain properties for actuator application. Non-equivalent Nb5+ donor doping modulates the phase transition from the mixture of rhombohedral and tetragonal phases to the pseudocubic phase and results in the coexistence of multiple phases. Moreover, the high-resolution TEM confirms the existence of polar nano regions that contribute to the macroscopic relaxor behaviour. The size of the domains is reduced with increasing Nb5+, resulting in an enhanced relaxor behaviour. The ferroelectric-relaxor transition temperature decreases from 85 to below 30 °C, implying a non-ergodic to ergodic relaxor transition. An improved strain of 0.56% and a giant normalized strain of 1120 pm/V were achieved for BNKT-4ST-1.5Nb, which were attributed to the unique domain structure in which nanodomains are embedded in an undistorted cubic matrix. Ferroelectric, antiferroelectric, and relaxor phases coexist. As the electric field is large enough, a reversible phase transition occurs. Furthermore, good temperature stability was obtained due to the stability of the nanodomains, and no degradation in strains was observed even after 104 cycles, which may originate from the reversible phase transition and dynamic domain wall. The results show that this design strategy offers a reference way to improve the strain behaviour and that BNKT-4ST-100xNb ceramics could be a potential material for high-displacement actuator applications.  相似文献   
8.
In this study, microcrystalline cellulose (MCC) was chemically modified with 3-(aminopropyl)triethoxysilane and added to epoxy to improve chemical, thermal and dynamic-mechanical characteristics of the composites. The composites were manufactured aided by sonication with 1.0%, 2.5%, or 5.0% wt/wt of untreated MCC or amino-functionalized MCC (MCC-Si). The epoxy/MCC-Si composites showed a decrease in the ─OH band by Fourier-transform infrared spectroscopy, and X-ray diffraction analysis indicated better dispersion. The incorporation of MCC-Si in epoxy resin decreased the heat of reaction, increased activation energy values (Ea) and pre-exponential factor (A), and did not affect thermal degradation. All conversion degree (α) versus temperature curves for the composites showed a sigmoidal shape. MCC-Si composites showed better dynamic-mechanical properties than the MCC counterparts, and the functionalization effect was evidenced in storage modulus (E') and loss modulus (E"). At 2.5% wt/wt of MCC-Si content an increase of 119% in E' at the glassy region, 127% in E' at the rubbery region and 173% in E" was observed compared to the neat resin, whereas the Tg barely changed among samples. Good adhesion between the amino-functionalized MCC and the epoxy matrix was observed at the fracture surface, evidencing that surface modification of MCC improves their chemical interaction.  相似文献   
9.
Pulse power energy conversion materials with ultrafast discharge processes and ultrahigh power densities have been widely used in the defense, energy, medical, and mining fields. The pressure-driven depolarization in ferroelectric materials is significant and accounts for the discharge processes. In this study, we focus on pressure-induced depolarization in (Pb1-1.5xLax)(Zr0.80Ti0.20)O3 (PLZT) (x = 0-0.07) ceramics, and their corresponding phase structure, dielectric properties, ferroelectric properties, and thermal depolarization performances. Although a satisfactory pulse power energy conversion performance has been achieved in Pb(Zr0.95Ti0.05)O3 materials, poor temperature stability negatively influences their application. The static charge densities of PLZT (x = 0.04, 0.06) decreased from 29.11 μC/cm2 and 31.53 μC/cm2 to 19.76 μC/cm2 and 6.56 μC/cm2 under 400 MPa hydrostatic pressure, respectively, which is attributed to a pressure-driven ferroelectric-antiferroelectric phase structural transition. In particular, the temperature stability of PLZT (x = 0.06) materials is up to 87°C. This study may guide the further development pulse power energy conversion devices.  相似文献   
10.
The objective of this study was to evaluate the influence of pH on rheological and viscoelastic properties of solutions based on blends of type A (GeA) or type B (GeB) gelatin and chitosan (CH). Solutions of GeA, GeB, CH, GeA:CH, and GeB:CH were prepared in several pH (3.5–6.0) and analyzed for determination of zeta-potential. Rheological analyses (stationary and dynamic essays) were carried out with blends allowing to study the effect of pH on shear stress, apparent viscosity, loss (G”) and storage (G’) moduli, and angle phase (Tanδ). Zeta potential of all biopolymers decreased linearly as a function of pH. CH presented higher values, and GeB, the lowest one, being the only having negative values at pH > 5. Overall, the pH influenced the rheological and viscoelastic properties of the colloidal solutions: shear stress and apparent viscosity increased as a function of pH. Other assays were carried out at 3% and 5% strain, for GeA:CH and GeB:CH, respectively. In the sol domain, G’ and G” (1 Hz) increased linearly for GeA:CH. But for GeB:CH, they increased in two linear different regions: one function between pH 3.5 and 5.0 and another one between 5.0 and 6.0, being a more important effect was visible in this last domain probably due to the negative net charge of gelatin, above it pI. An effect in two domains was also visible for Tanδ, explained in the same manner as previously. The GeB:CH blends behaved like diluted solutions, and transition temperatures increased as a function of pH.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号