首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39924篇
  免费   4316篇
  国内免费   3405篇
电工技术   907篇
技术理论   3篇
综合类   4074篇
化学工业   4996篇
金属工艺   5730篇
机械仪表   2415篇
建筑科学   7946篇
矿业工程   2165篇
能源动力   817篇
轻工业   1115篇
水利工程   1956篇
石油天然气   1074篇
武器工业   327篇
无线电   1019篇
一般工业技术   5528篇
冶金工业   4294篇
原子能技术   246篇
自动化技术   3033篇
  2024年   72篇
  2023年   690篇
  2022年   1196篇
  2021年   1543篇
  2020年   1554篇
  2019年   1357篇
  2018年   1286篇
  2017年   1572篇
  2016年   1654篇
  2015年   1659篇
  2014年   2300篇
  2013年   2385篇
  2012年   2741篇
  2011年   3215篇
  2010年   2375篇
  2009年   2414篇
  2008年   2211篇
  2007年   2573篇
  2006年   2313篇
  2005年   1979篇
  2004年   1663篇
  2003年   1538篇
  2002年   1270篇
  2001年   1025篇
  2000年   799篇
  1999年   708篇
  1998年   506篇
  1997年   440篇
  1996年   344篇
  1995年   300篇
  1994年   284篇
  1993年   193篇
  1992年   175篇
  1991年   133篇
  1990年   155篇
  1989年   112篇
  1988年   81篇
  1987年   53篇
  1986年   52篇
  1984年   37篇
  1982年   29篇
  1980年   34篇
  1979年   36篇
  1966年   28篇
  1965年   31篇
  1964年   49篇
  1963年   39篇
  1959年   33篇
  1958年   30篇
  1955年   46篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
高面板坝的变形对面板的安全运行有着特别重要的影响,国内外已建的高面板坝工程中,因坝体变形大导致防渗面板挤压破损,坝体渗漏量大的实例较多,不得不降低水库水位进行修复处理,造成较大的经济损失乃至给大坝的长期运行留下安全隐患。通过发生挤压破损的实例分析,发现变形控制缺乏系统性是发生面板挤压破损的主要因素,为预防面板破损,系统提出了“控制坝体总变形,转化有害变形,适应纵向变形”的坝体变形控制方法,并在使用软硬岩混合料筑坝的董箐面板堆石坝中得到的应用,取得了良好效果,该工程运行至今达十余年,未见面板有挤压破损迹象,该方法对建设200 m以上乃至300 m级超高面板坝具有重要借鉴意义。  相似文献   
2.
《Soils and Foundations》2022,62(1):101103
The present study proposes a new elasto-plastic constitutive model that considers different types of hydrates in pore spaces. Many triaxial compression tests on both methane hydrate-bearing soils and carbon dioxide hydrate-bearing soils have been carried out over the last few decades. It has been revealed that methane hydrate-bearing soils and carbon dioxide hydrate-bearing soils have different strength and dilatancy properties even though they have the same hydrate contents. The reason for this might be due to the different types of hydrate morphology. In this study, therefore, the effect of the hydrate morphology on the mechanical response of gas-hydrate-bearing sediments is investigated through a model analysis by taking into account the different hardening rules corresponding to each type of hydrate morphology. In order to evaluate the capability of the proposed model, it is applied to the results of past triaxial compression tests on both methane hydrate-containing and carbon dioxide hydrate-containing sand specimens. The model is found to successfully reproduce the different stress–strain relations and dilatancy behaviors, by only giving consideration to the different morphology distributions and not changing the fitting parameters. The model is then used to predict a possible range in which the maximum deviator stress can move for various hydrate morphology ratios; the range is defined as the strength-band. The predicted curve of the maximum deviator stress obtained by the constitutive model matches the empirical equations obtained from past experiments. It supports the fact that the hydrate morphology ratio changes with the total hydrate saturation. These findings will contribute to a better understanding of the relation between the microscopic structures and macro-mechanical behaviors of gas-hydrate-bearing sediments.  相似文献   
3.
《Ceramics International》2022,48(5):6266-6276
Porous diatomite ceramics with hierarchical pores and high apparent porosity (50.29–56%) were successfully fabricated via direct stereolithography. The pre-ball-milling time, dispersant type and dispersant concentration were systematically investigated to prepare diatomite pastes with high solid loading, low viscosity and a self-supporting effect. The results showed that a pre-ball-milling time of 24 h was more suitable to prepare diatomite pastes with high solid loading, and Span80 at 2 wt% was the optimal dispersant to obtain 40 vol% diatomite paste with a low viscosity and a self-supporting effect. To restrain the formation of defects, a heating rate as low as 0.2 °C/min was allowed to control the pyrolysis rate in the multistage debinding process. At sintering temperatures ranging from 900 °C to 1000 °C, porous diatomite ceramics exhibited a typical bimodal porosity, high apparent porosity and great flexural strength.  相似文献   
4.
《Ceramics International》2022,48(21):31738-31745
In this study, novel polyborosilazane-derived SiBCN(O) ceramic was used as self-healing component in self-healing Cf/SiBCN(O) composite, which was prepared by polymer infiltration and pyrolysis (PIP) process. Molecular-level structure design of boron-containing ceramic precursors was utilized to achieve uniform dispersion of boron-containing self-healing components in prepared composites. No elemental diffusion was observed at the interface of ceramic matrix and carbon fibers, which resulted in stable SiBCN(O) structure. In addition, boron was uniformly distributed in Cf/SiBCN(O) composite ceramic matrix, which was beneficial for self-healing of cracks. Cracks and indentations were able to heal at high temperatures in air. The best crack-healing behavior occurred in air atmosphere at 1000 °C, with nearly complete crack healing. This excellent self-healing behavior was achieved because silicon and boron atoms in SiBCN(O) ceramic reacted with available oxygen at high temperatures to form SiO2(l), B2O3(l), and B2O3·xSiO2 liquid phases, which effectively filled cracks. In general, as-prepared Cf/SiBCN(O) composite exhibited excellent self-healing properties and shows great application potential in high-temperature environment applications such as aviation, aerospace, and nuclear power.  相似文献   
5.
Novel inks were formulated by dissolving polycaprolactone (PCL), a hydrophobic polymer, in organic solvent systems; polyethylene oxide (PEO) was incorporated to extend the range of hydrophilicity of the system. Hydroxyapatite (HAp) with a weight ratio of 55–85% was added to the polymer-based solution to mimic the material composition of natural bone tissue. The direct ink writing (DIW) technique was applied to extrude the formulated inks to fabricate the predesigned tissue scaffold structures; the influence of HAp concentration was investigated. The results indicate that in comparison to other inks containing HAp (55%, 75%, and 85%w/w), the ink containing 65% w/w HAp had faster ink recovery behavior; the fabricated scaffold had a rougher surface as well as better mechanical properties and wettability. It is noted that the 65% w/w HAp concentration is similar to the inorganic composition of natural bone tissue. The elastic modulus values of PCL/PEO/HAp scaffolds were in the range of 4–12 MPa; the values were dependent on the HAp concentration. Furthermore, vancomycin as a model drug was successfully encapsulated in the PCL/PEO/HAp composite scaffold for drug release applications. This paper presents novel drug-loaded PCL/PEO/HAp inks for 3D scaffold fabrication using the DIW printing technique for potential bone scaffold applications.  相似文献   
6.
The present study investigates the combined influence of Channel to Rib Width (CRW) ratio and clamping pressure on the structure and performance of High Temperature-Polymer Electrolyte Membrane Fuel Cell (HT-PEMFC) using a three-dimensional numerical model developed previously. It also considers the impact of interfacial contact resistance between the Gas Diffusion Layer (GDL) and Bipolar Plate (BPP). The structural analysis of the single straight channel HT-PEMFC geometry shows that the von-Mises stress greatly increases in the GDL under the ribs as the CRW ratio increases resulting in considerably high deformation. The cell performance analysis depicts the significance of ohmic resistance and concentration polarization for different CRW ratios, particularly at higher operating current densities. However, in low to medium current density regions, the CRW ratio has little influence on cell performance. A substantial impact on the species, overpotential, and current distributions is observed. The findings also reveal that the CRW ratio significantly affects the temperature distribution in the cell.  相似文献   
7.
A novel image sequence-based risk behavior detection method to achieve high-precision risk behavior detection for power maintenance personnel is proposed in this paper. In this method, the original image sequence data is first separated from the foreground and background. Then, the free anchor frame detection method is used in the foreground image to detect the personnel and correct their direction. Finally, human posture nodes are extracted from each frame of the image sequence, which are then used to identify the abnormal behavior of the human. Simulation experiment results demonstrate that the proposed algorithm has significant advantages in terms of the accuracy of human posture node detection and risk behavior identification.  相似文献   
8.
为研究既有线有砟轨道路基的翻浆冒泥机理,自主研发了一套能够模拟循环荷载–湿化耦合作用的模型试验系统。模型试样直径500 mm,由厚度分别为350 mm的路基土和200 mm的道砟组成,整个试样在高强度透明有机玻璃模型筒中制备完成。模型试验系统配备有监测荷载、位移、体积含水率和孔隙水压力的4种传感器,并通过高清相机对颗粒迁移过程进行图像捕捉。基于所研发的试验系统,针对辛泰铁路典型翻浆冒泥病害路段土样,开展翻浆冒泥模型试验。试验结果表明:动孔隙水压力是导致翻浆冒泥病害产生的关键因素。随着体积含水率的增加,动孔隙水压力引起的颗粒迁移量逐渐增加;在饱和状态下,会引起大量颗粒迁移,翻浆冒泥现象显著。试验结束时,道砟污染指数达到25%,在实际工程中已严重影响铁路的正常运营,有必要对污染道砟进行换填。  相似文献   
9.
MgAl2O4 transparent ceramics were shaped by a commonly used polyacrylic acid (PAA), which acted as both dispersant and gelling agent. The spinel slurries were prepared by ball-milling MgAl2O4 powder, PAA, and water in an attrition mill. The gelling of slurries happened at room temperature in air atmosphere without any other organic additive. The gelling mechanism was the formation of chelates between Mg2+ and carboxyl groups (-COO) of PAA. The frequency-based testing method was applied to investigate the gelling process of the as-prepared slurry. In addition, a novel in situ characterization method based on a modified indentation testing was invented to better understand the strengthening of the wet green body with time and to guide when demolding could be carried out. After sintering, transparent MgAl2O4 ceramics with high in-line transmittance were resulted.  相似文献   
10.
为了监测绕组变压器的静态应力场和发生短路等故障时的动态应力变化,设计了一种用于电气设备状态监测的新式FBG传感器。该传感器由聚醚醚酮材料封装的FBG构成,通过内部圆锥形空腔结构实现将轴向应力集中于FBG敏感位置。通过仿真对不同压力强度下传感器结构的应力场部分及形变趋势进行了计算与分析,论证了设计的合理性。实验分别对静态载荷和动态冲击进行测试,结果显示,在静态压载测试中,当100 N相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号