首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31336篇
  免费   2576篇
  国内免费   1632篇
电工技术   905篇
综合类   1705篇
化学工业   11630篇
金属工艺   6283篇
机械仪表   544篇
建筑科学   831篇
矿业工程   639篇
能源动力   1633篇
轻工业   2896篇
水利工程   156篇
石油天然气   1442篇
武器工业   121篇
无线电   1129篇
一般工业技术   3668篇
冶金工业   1454篇
原子能技术   278篇
自动化技术   230篇
  2024年   69篇
  2023年   760篇
  2022年   820篇
  2021年   1102篇
  2020年   1192篇
  2019年   1090篇
  2018年   945篇
  2017年   1126篇
  2016年   979篇
  2015年   983篇
  2014年   1442篇
  2013年   1697篇
  2012年   1919篇
  2011年   2279篇
  2010年   1629篇
  2009年   1919篇
  2008年   1600篇
  2007年   1992篇
  2006年   1850篇
  2005年   1541篇
  2004年   1339篇
  2003年   1174篇
  2002年   951篇
  2001年   868篇
  2000年   747篇
  1999年   483篇
  1998年   464篇
  1997年   362篇
  1996年   360篇
  1995年   257篇
  1994年   231篇
  1993年   219篇
  1992年   194篇
  1991年   171篇
  1990年   152篇
  1989年   89篇
  1988年   67篇
  1987年   60篇
  1986年   60篇
  1985年   51篇
  1984年   52篇
  1983年   22篇
  1982年   44篇
  1981年   36篇
  1980年   33篇
  1979年   20篇
  1978年   24篇
  1977年   18篇
  1976年   17篇
  1975年   20篇
排序方式: 共有10000条查询结果,搜索用时 328 毫秒
1.
Microbiologically influenced corrosion induced by bacteria has been studied for many years. Corrosion is known to be sensitive to the presence of microalgae, such as Phaeodactylum tricornutum. However, the life activity of P. tricornutum that influences the general and localized corrosion of carbon steel is not fully understood. The current study uses a combination of immersion tests and electrochemical experiments with a detailed surface characterization to reveal the naturally formed corrosion products with/without the presence of P. tricornutum. The results show that samples suffer from pitting corrosion and the averaged pit depths are approximately 15 μm under a light–dark cycle condition or a 24-h constant light condition. Meanwhile, the corrosion products are mainly comprised of γ-FeOOH and Fe3O4 in a constant light condition. However, γ-FeOOH, Fe3O4, and FeCO3 are found in a light–dark cycle. This study proposes the fundamental mechanisms of the effect of P. tricornutum life activities on the corrosion performance of Q235 carbon steel, to fulfill the knowledge gaps of the presence of microalgae inducing the general and pitting corrosion of carbon steel.  相似文献   
2.
Electroreduction of small molecules such as H2O, CO2, and N2 for producing clean fuels or valuable chemicals provides a sustainable approach to meet the increasing global energy demands and to alleviate the concern on climate change resulting from fossil fuel consumption. On the path to implement this purpose, however, several scientific hurdles remain, one of which is the low energy efficiency due to the sluggish kinetics of the paired oxygen evolution reaction (OER). In response, it is highly desirable to synthesize high-performance and cost-effective OER electrocatalysts. Recent advances have witnessed surface reconstruction engineering as a salient tool to significantly improve the catalytic performance of OER electrocatalysts. In this review, recent progress on the reconstructed OER electrocatalysts and future opportunities are discussed. A brief introduction of the fundamentals of OER and the experimental approaches for generating and characterizing the reconstructed active sites in OER nanocatalysts are given first, followed by an expanded discussion of recent advances on the reconstructed OER electrocatalysts with improved activities, with a particular emphasis on understanding the correlation between surface dynamics and activities. Finally, a prospect for clean future energy communities harnessing surface reconstruction-promoted electrochemical water oxidation will be provided.  相似文献   
3.
Developing non-platinum group metal (non-PGM) electrocatalysts for the hydrogen oxidation reaction (HOR) represents the efforts towards the more economical use of hydrogen fuel cells and hydrogen energy, which has attracted tremendous attention recently. However, non-PGM electrocatalysts for the HOR are still in their early development stages as compared with the significant advances in those for the oxygen reduction reaction and hydrogen evolution reaction. Herein, this paper summarizes the recent progresses and highlights the key challenges for the rational design of non-PGM electrocatalysts, aiming to promote the development of non-PGM HOR electrocatalysts. Fundamental understandings of the HOR mechanism are firstly reviewed, where theoretical interpretations on the low HOR kinetics in alkaline media, including the hydrogen binding energy theory, the bifunctional mechanism, and the water molecule reorganization, are particularly discussed. Subsequently, progresses of typical non-PGM HOR electrocatalysts in acid and alkaline media are summarized separately. For the HOR under alkaline conditions, the superiorities and challenges of Ni-based catalysts are discussed with a particular focus as they are the most promising non-PGM electrocatalysts. Finally, this paper highlights the challenges and provide perspectives on the future development directions of non-PGM HOR electrocatalysts.  相似文献   
4.
Dealloyed nanoporous gold (np-Au) has applications as oxygen reduction catalysis in Li-air batteries and fuel cells, or as actuators to convert electricity into mechanical energy. However, it faces the challenges of coarsening-induced structure instability, mechanical weakness due to low relative densities, and slow dealloying rates. Here, monolithic np-Au is dealloyed from a single-phase Au25Ni75 solid-solution at a one-order faster dealloying rate, ultra-low residual Ni content, and importantly, one-third more relative density than np-Au dealloyed from conventional Au25Ag75. The small atomic radius and low dealloying potential of the sacrificing element Ni are intrinsically beneficial to fast produce high relative density np-Au, as predicted by a general model for dealloying of binary alloys and validated by experiments. Stable, durable, and reversible actuation of np-Au takes place under cyclic potential triggering in alkaline and acidic electrolytes with negligible coarsening-induced strain-shift. The thermal and mechanical robustness of bulk np-Au is confirmed by two-order slower ligament coarsening rates during annealing at 300 °C and 45 MPa macroscopic yielding strength distinctive from the typical early onset of plastic yielding. This article opens a rich direction to achieve high relative density np-Au which is essential for porous network connectivity, mechanical strength, and nanostructure robustness for electrochemical functionality.  相似文献   
5.
Ti-based amorphous metallic glasses have excellent mechanical, physical, and chemical properties, which is an important development direction and research hotspot of metal composite reinforcement. As a stable, simple, efficient, and large-scale preparation technology of metallic powders, the gas atomization process provides an effective way of preparing amorphous metallic glasses. In this study, the controllable fabrication of a Ti-based amorphous powder, with high efficiency, has been realized by using gas atomization. The scanning electron microscope, energy-dispersive spectrometer, and X-ray diffraction are used to analyze surface morphology, element distribution, and phase structure, respectively. A microhardness tester is used to measure the mechanical property. An electrochemical workstation is used to characterize corrosion behavior. The results show that as-prepared microparticles are more uniform and exhibit good amorphous characteristics. The mechanical test shows that the hardness of amorphous powder is significantly increased as compared with that before preparation, which has the prospect of being an important part of engineering reinforced materials. Further electrochemical measurement shows that the corrosion resistance of the as-prepared sample is also significantly improved. This study has laid a solid foundation for expanding applications of Ti-based metallic glasses, especially in heavy-duty and corrosive domains.  相似文献   
6.
Developing low cost, highly efficient, and long-term stability electrocatalysts are critical for direct oxidation methanol fuel cell. Despite huge efforts, designing low-cost electrocatalysts with high activity and long-term durability remains a significant technical challenge. Here, we prepared a new kind of platinum-nickel catalyst supported on silane-modified graphene oxide (NH2-rGO) by a two-step method at room temperature. Powder X-ray diffraction, UV–vis spectroscopy, Raman, FTIR spectroscopy and X-ray photoelectron spectroscopy results confirm that GO was successfully modified with 3-aminopropyltriethoxysilane (APTES), which helps to uniformly disperse PtNi nanoparticles. Cyclic voltammetry, chronoamperometry, CO-stripping and rotating disk electrode (RDE) results imply that PtNi/NH2-rGO catalyst has significantly higher catalytic activity, enhance the CO toxicity resistance, higher stability and much faster kinetics of methanol oxidation than commercial Pt/C under alkaline conditions.  相似文献   
7.
This study deals with the manufacturing of catalyst-coated membranes (CCMs) for newcomers in the field of coating. Although there are many studies on electrode ink composition for improving the performance of proton-exchange membrane fuel cells (PEMFCs), there are few papers dealing with electrode coating itself. Usually, it is a know-how that often remains secret and constitutes the added value of scientific teams or the business of industrialists. In this paper, we identify and clarify the role of key parameters to improve coating quality and also to correlate coating quality with fuel cell performance via polarization curves and electrochemical active surface area measurements. We found that the coating configurations can affect the performance of lab-made CCMs in PEMFCs. After the repeatability of the performance obtained by our coating method has been proved, we show that: (i) edge effects, due to mask shadowing - cannot be neglected when the active surface area is low, (ii) a heterogeneous thickness electrode produces performance lower than a homogeneous thickness electrode, and (iii) the origin and storage of platinum on carbon powders are a very important source of variability in the obtained results.  相似文献   
8.
Electrolysis of water for producing hydrogen instead of traditional fossil fuels is one of the most promising methods to alleviate environmental pollution and energy crisis. In this work, Fe and F ion co-doped Ni3S2 nanoarrays grown on Ni foam substrate were prepared by typical hydrothermal and sulfuration processes for the first time. Density functional theory (DFT) calculation demonstrate that the adsorption energy of the material to water is greatly enhanced due to the doping of F and Fe, which is conducive to the formation of intermediate species and the improvement of electrochemical performance of the electrode. The adsorption energy of anions (F and S) and cations (Fe and Ni) to water in each material was also calculated, and the results showed that F ion showed the most optimal adsorption energy of water, which proved that the doping of F and Fe was beneficial to improve the electrochemical performance of the electrode. It is worth noting that the surface of Fe–F–Ni3S2 material will undergo reconstruction during the process of water oxidation reaction and urea oxidation reaction, and amorphous oxides or hydroxides in situ would be formed on the surface of electrode, which are the real active species.  相似文献   
9.
Effects of different drying methods and different addition levels of eggplant (EP) on product quality of low-fat patties (LFPs) were investigated during storage. EP was dried in an oven dryer at 60 °C or a freeze dryer at −50 °C. LFPs were prepared by replacing with 1.5% soy protein isolate (SPI). Six treatments were used in this study: (1) control (CTL), without addition of EP; (2) reference (REF), 0.1% ascorbic acid; (3) O1, 0.25% oven-dried (OD) EP; (4) O2, 0.5% ODEP; (5) F1, 0.25% freeze-dried (FD) EP; and (6) F2, 0.5% FDEP. Redness (a*) and lightness (L*) values in LFPs added with EP were lower than those of others (p < 0.05) and decreased with increasing storage time. Yellowness (b*) values of cooked patties were increased during storage time (p < 0.05), with control having the highest value. The addition of EP or ascorbic acid into LFPs lowered microbial counts than control (p < 0.05). Thiobarbituric acid reactive substances (TBARS) was increased during storage, with REF having the lowest value, and patties added with EP had lower TBARS values than control during storage. Volatile basic nitrogen (VBN, mg%) contents of all patties also increased during storage time with O2 and F2 having lower values than control. Therefore, EP might have potential as a natural antioxidant in meat products during storage.  相似文献   
10.
Zinc cadmium sulfide (ZnxCd1?xS) is a good photocatalyst for hydrogen evolution reaction (HER), but an optimum x (xm) at which a maximum HER rate is reached varies from one report to another. In this work, we examine the effect of light wavelength, not only for the HER to H2 in the presence of Na2S and Na2SO3, but also for oxygen reduction reaction (ORR) without addition of any sacrifices. For the HER under a 365 and 420 nm LED lamp, the xm were 0.9 and 0.7, respectively. For the HER under a 330 and 395–515 nm cut-off xenon lamp, the xm were 0.7 and 0.5, respectively. For the ORR under a 420 nm cut-off halogen lamp, a maximum production of H2O2 was observed at x = 0.3. Furthermore, after 4% ZnCo2O4 loading, ZnxCd1?xS had an increased activity and stability, either for the HER or for the ORR. Through a (photo)electrochemical measurement, it is proposed that the photocatalytic activity of ZnxCd1?xS is determined by its light absorptivity and electron reactivity. The improved performance of n-type ZnxCd1?xS by p-type ZnCo2O4 is due to formation of a p-n junction, promoting the HER (ORR) on ZnxCd1?xS, and the sulfide (water) oxidation on ZnCo2O4. This work highlights that ZnxCd1-xS is a promising photocatalyst for H2 and H2O2 production, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号