首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15632篇
  免费   1956篇
  国内免费   1219篇
电工技术   662篇
综合类   840篇
化学工业   3027篇
金属工艺   3249篇
机械仪表   769篇
建筑科学   78篇
矿业工程   154篇
能源动力   412篇
轻工业   1238篇
水利工程   8篇
石油天然气   172篇
武器工业   148篇
无线电   2361篇
一般工业技术   2795篇
冶金工业   1153篇
原子能技术   1417篇
自动化技术   324篇
  2024年   33篇
  2023年   350篇
  2022年   537篇
  2021年   704篇
  2020年   656篇
  2019年   638篇
  2018年   638篇
  2017年   696篇
  2016年   624篇
  2015年   590篇
  2014年   773篇
  2013年   1083篇
  2012年   989篇
  2011年   1107篇
  2010年   789篇
  2009年   878篇
  2008年   820篇
  2007年   1088篇
  2006年   954篇
  2005年   801篇
  2004年   740篇
  2003年   574篇
  2002年   424篇
  2001年   379篇
  2000年   303篇
  1999年   269篇
  1998年   222篇
  1997年   192篇
  1996年   166篇
  1995年   125篇
  1994年   121篇
  1993年   112篇
  1992年   93篇
  1991年   67篇
  1990年   47篇
  1989年   51篇
  1988年   34篇
  1987年   9篇
  1986年   11篇
  1985年   17篇
  1984年   12篇
  1983年   9篇
  1982年   38篇
  1981年   21篇
  1980年   3篇
  1979年   4篇
  1978年   5篇
  1977年   2篇
  1976年   2篇
  1951年   5篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
The effects of non-thermal plasma (NTP) on the physicochemical properties of wheat flour and the quality of fresh wet noodles ( FWN) were investigated. The results showed that NTP effectively decreased the total plate count (TPC), yeast and mould count (YMC) and Bacillus spp. in wheat flour. Wet gluten contents and the stability time reached the maximum when treated for 20 s. The viscosity of starch increased significantly after treatment due to the increased of damaged starch. The contents of secondary structure were altered to some extent, which was because that the ordered network structure of gluten protein broken. Furthermore, compared with the control, texture properties of FWN were enhanced significantly at 20 s, and the darkening rate of FWN was greatly inhibited due to the low polyphenol oxidase (PPO) activity. Consequently, the most suitable treatment was 500 W for 20 s, providing a basis for the application of NTP in flour products.  相似文献   
2.
《Ceramics International》2021,47(20):28642-28649
Ti3C2Tx MXene has attracted remarkable attention due to its promising applications in energy storage and sensors. However, traditional MXene preparation methods used HF as etchant, which was highly toxic and harmful to human and environment. Moreover, the aqueous etchants will also result in the combination of OH, O and F groups on the surfaces, making it difficult to control the varieties and contents of the surface terminations. In this paper, a green and mild electrochemical exfoliation method was proposed to synthesize Ti3C2Fx and synchronously control its fluorination degree on the surface. A non-aqueous ionic liquid, [BMIM][PF6]-based solution was used as electrolyte. The as-prepared Ti3C2Fx was fluorinated with the CF and TiF3 groups, which were electrochemically active and contributed to the excellent cycling stability of the MXene anode-based Li-ion batteries. These findings provided a facile strategy to prepare MXene materials and dope MXene with tailored property for MXene-based energy devices applications.  相似文献   
3.
The phase shift characteristics reflect the state change of electromagnetic wave in plasma sheath and can be used to reveal deeply the action mechanism between electromagnetic wave and plasma sheath. In this paper, the phase shift characteristics of electromagnetic wave propagation in plasma were investigated. Firstly, the impact factors of phase shift including electron density,collision frequency and incident frequency were discussed. Then, the plasma with different electron density distribution profiles were employed to investigate the influence on the phase shift characteristics. In a real case, the plasma sheath around the hypersonic vehicle will affect and even break down the communication. Based on the hypersonic vehicle model, we studied the electromagnetic wave phase shift under different flight altitude, speed, and attack angle. The results indicate that the phase shift is inversely proportional to the flight altitude and positively proportional to the flight speed and attack angle. Our work provides a theoretical guidance for the further research of phase shift characteristics and parameters inversion in plasma.  相似文献   
4.
The quantification of hydrogen peroxide(H_2O_2) generated in the plasma-liquid interactions is of great importance, since the H_2O_2 species is vital for the applications of the plasma-liquid system.Herein, we report on in situ quantification of the aqueous H_2O_2(H_2O_2 aq) using a colorimetric method for the DC plasma-liquid systems with liquid as either a cathode or an anode. The results show that the H_2O_2 aqyield is 8–12 times larger when the liquid acts as a cathode than when the liquid acts as an anode. The conversion rate of the gaseous OH radicals to H_2O_2 aqis 4–6 times greater in the former case. However, the concentrations of dissolved OH radicals for both liquid as cathode and anode are of the same order of tens of n M.  相似文献   
5.
在多晶硅太阳能电池的生产过程中, 金刚线切割技术(Diamond wire sawn, DWS)具有切割速度快、精度高、原材料损耗少等优点, 受到了广泛关注。金刚线切割多晶硅表面形成的损伤层较浅, 与传统的酸腐蚀制绒技术无法匹配, 金属催化化学腐蚀法应运而生。金属催化化学腐蚀法制绒具有操作简单、结构可控且易形成高深宽比的绒面等优点, 具有广阔的应用前景。本文总结了不同类型的金属催化剂在制绒过程中的腐蚀机理及其形成的绒面结构, 深入分析和讨论了具有代表性的银、铜的单一及复合催化腐蚀过程及绒面结构和电池片性能。最后对金刚线切割多晶硅片表面的金属催化化学腐蚀法存在的问题进行了分析, 并展望了未来的研究方向。  相似文献   
6.
In this study, monolithic B4C and B4C-based ceramics incorporating FeNiCoCrMo dual-phase (FCC and BCC) high entropy alloys (HEAs) were produced by spark plasma sintering (SPS). The effect of additives on the densification behavior, mechanical properties, microstructures, and phase evaluation of the samples were investigated. X-ray analysis confirmed the existence of FCC structured HEA and depletion of BCC structured HEA, after high-temperature reaction between B4C-HEAs. The addition of HEAs enhanced the densification behavior by liquid phase sintering. Furthermore, hardness and fracture toughness values of the samples increased with increasing HEAs content. Fracture toughness and hardness values for all composites were higher than the monolithic B4C. A combination of the highest density (∼99.22 %) and the best mechanical properties (32.3 GPa hardness and 4.53 MPa m1/2 fracture toughness) was achieved with 2.00 vol.% HEA addition.  相似文献   
7.
Fully dense ceramics with retarded grain growth can be attained effectively at relatively low temperatures using a high-pressure sintering method. However, there is a paucity of in-depth research on the densification mechanism, grain growth process, grain boundary characterization, and residual stress. Using a strong, reliable die made from a carbon-fiber-reinforced carbon (Cf/C) composite for spark plasma sintering, two kinds of commercially pure α-Al2O3 powders, with average particle sizes of 220 nm and 3 μm, were sintered at relatively low temperatures and under high pressures of up to 200 MPa. The sintering densification temperature and the starting threshold temperature of grain growth (Tsg) were determined by the applied pressure and the surface energy relative to grain size, as they were both observed to increase with grain size and to decrease with applied pressure. Densification with limited grain coarsening occurred under an applied pressure of 200 MPa at 1050 °C for the 220 nm Al2O3 powder and 1400 °C for the 3 μm Al2O3 powder. The grain boundary energy, residual stress, and dislocation density of the ceramics sintered under high pressure and low temperature were higher than those of the samples sintered without additional pressure. Plastic deformation occurring at the contact area of the adjacent particles was proved to be the dominant mechanism for sintering under high pressure, and a mathematical model based on the plasticity mechanics and close packing of equal spheres was established. Based on the mathematical model, the predicted relative density of an Al2O3 compact can reach ~80 % via the plastic deformation mechanism, which fits well with experimental observations. The densification kinetics were investigated from the sintering parameters, i.e., the holding temperature, dwell time, and applied pressure. Diffusion, grain boundary sliding, and dislocation motion were assistant mechanisms in the final stage of sintering, as indicated by the stress exponent and the microstructural evolution. During the sintering of the 220 nm alumina at 1125 °C and 100 MPa, the deformation tends to increase defects and vacancies generation, both of which accelerate lattice diffusion and thus enhance grain growth.  相似文献   
8.
《Ceramics International》2022,48(8):10412-10419
Dense nickel-zinc (NiZn) ferrite ceramics were successfully fabricated within tens of seconds via spark plasma sintering. The phase composition and microstructure of the sintered samples were characterized by X-ray diffraction and scanning electron microscopy, respectively. The static magnetic properties at room temperature and Curie temperature of the samples were investigated by vibrating sample magnetometry. The results indicated that the main phase of the sintered samples was Ni0.75Zn0.25Fe2O4 with spinal structure, and the sintering temperature and heating rate observably affected the microstructure and density, then the magnetic properties of the sample. The Joule heat generated by NiZn ferrite during spark plasma sintering was very important for the rapid preparation of the sample with high density and small grain size. The low sintering temperature and heating rate would be helpful to obtain samples with small grain size, high density, and then good magnetic properties. The samples sintered at 900 °C with the heating rate of 5–10 °C/s were characterized of the relative density above 95%, 4πMs value beyond 4000 Gs and coercivity below 27.7 Oe.  相似文献   
9.
《Ceramics International》2022,48(11):15640-15646
Ferroelectric ceramic with a large electrocaloric (EC) effect at a very low electric field is very attractive in the next solid state refrigeration technology. In this work, two Pb(Sc0.25In0.25Nb0.25Ta0.25)O3 (PSINT) medium-entropy ceramics were successfully synthesized by a spark plasma sintering (SPS) technology, including one-step-SPS processed and two-step-SPS processed samples. A large EC effect (△T ~ 0.85 K) with a high EC strength (△T/△E ~ 0.021 K cm/kV) around room temperature are obtained at a very low electric field (~40 kV/cm) in the two-step-SPS processed sample. Moreover, the working temperature range is very broad (~120 K), which can be responsible for the high relaxation degree of the dielectric peak. It can be believed that the PSINT medium-entropy ceramics can be promising candidates for application in the next-generation EC cooling devices.  相似文献   
10.
《Ceramics International》2022,48(20):29601-29613
Sliding wear behaviors of atmospheric plasma-sprayed Yttria Stabilized Zirconia (YSZ) coating mated with four metallic or ceramic counterparts (Si3N4, Al2O3, GCr15 and ZrO2) were investigated. It has been found that YSZ coatings in contact with Si3N4 and GCr15 show better tribological performances than the other cases, which is due to the formation of the tribolayer mainly consisting of Si3N4 and Fe2O3 respectively on the worn surfaces. In the case of YSZ coating-Al2O3 and YSZ coating-ZrO2 tribopairs, the wear debris are more irregular and larger in size, resulting in severe abrasive wear and brittle fracture of debris particles. In particular, the specific wear rate of YSZ coating sliding against GCr15 is negative due to the significant material transfer of the tribo-oxide layer, while that of YSZ coating sliding against ZrO2 is the highest. Amorphization of the wear particles appears in the four cases due to the repeated mechanical action. It has been demonstrated that the wear of YSZ coating deteriorates with the increased flash temperature between the contact surfaces during rubbing process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号