首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   67611篇
  免费   6072篇
  国内免费   2225篇
电工技术   2647篇
技术理论   1篇
综合类   2911篇
化学工业   24628篇
金属工艺   1477篇
机械仪表   1590篇
建筑科学   2596篇
矿业工程   479篇
能源动力   11996篇
轻工业   3553篇
水利工程   291篇
石油天然气   3743篇
武器工业   467篇
无线电   4726篇
一般工业技术   10394篇
冶金工业   1447篇
原子能技术   1815篇
自动化技术   1147篇
  2024年   149篇
  2023年   1556篇
  2022年   1609篇
  2021年   3089篇
  2020年   2676篇
  2019年   2396篇
  2018年   1919篇
  2017年   2418篇
  2016年   2243篇
  2015年   2174篇
  2014年   3686篇
  2013年   4224篇
  2012年   4562篇
  2011年   5701篇
  2010年   4161篇
  2009年   4015篇
  2008年   3516篇
  2007年   4185篇
  2006年   3674篇
  2005年   2954篇
  2004年   2532篇
  2003年   2313篇
  2002年   1904篇
  2001年   1638篇
  2000年   1208篇
  1999年   929篇
  1998年   827篇
  1997年   589篇
  1996年   540篇
  1995年   419篇
  1994年   431篇
  1993年   344篇
  1992年   293篇
  1991年   223篇
  1990年   133篇
  1989年   106篇
  1988年   92篇
  1987年   57篇
  1986年   60篇
  1985年   93篇
  1984年   73篇
  1983年   48篇
  1982年   51篇
  1981年   10篇
  1980年   25篇
  1979年   6篇
  1978年   4篇
  1977年   6篇
  1959年   11篇
  1951年   31篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Sealing performance between two contacting surfaces is of significant importance to stable operation of proton exchange membrane (PEM) fuel cells. In this work, an analytical micro-scale approach is first established to predict the gas leakage in fuel cells. Gas pressure and uneven pressure distribution at the interface are also included in the model. At first, the micro tortuous leakage path at the interface is constructed by introducing contact modelling and fractal porous structure theory. In order to obtain the leakage at the entire surface, contact pressure distribution is predicted based on bonded elastic layer model. The gas leakage through the discontinuous interface can be obtained with consideration of convection and diffusion. Then, experiments are conducted to validate the numerical model, and good agreement is obtained between them. Finally, influences of surface topology, gasket compression and gasket width on leakage are studied based on the model. The results show that gas leakage would be greatly amplified when the asperity standard deviation of surface roughness exceeds 1.0 μm. Gaskets with larger width and smaller thickness are beneficial to sealing performance. The model is helpful to understand the gas leakage behavior at the interface and guide the gasket design of fuel cells.  相似文献   
2.
The ohmic resistance in solid oxide fuel cells (SOFCs) mainly comes from the electrolyte, which can be reduced by developing novel electrolyte materials with higher ionic conductivity and/or fabricating thin-film electrolytes. Among various kinds of thin-film fabrication technology, the physical vapor deposition (PVD) method can reduce the electrolyte thickness to a few micrometers and mitigate the issues associated with high-temperature sintering, which is necessary for wet ceramic methods. This review summarizes recent development progress in thin-film electrolytes fabricated by the PVD method, especially pulsed laser deposition (PLD) and magnetron sputtering. At first, the importance of the substrate surface morphology for the quality of the film is emphasized. After that, the fabrication of thin-film doped-zirconia and doped-ceria electrolytes is presented, then we provide a brief summary of the works on other types of electrolytes prepared by PVD. Finally, we have come to the summary and made perspectives.  相似文献   
3.
Bimetallic catalysts have been investigated as the most efficient materials to accelerate the chemical transformations at the anode in Direct Ethanol Fuel Cells. A comparative study is presented here to synthesize Ni–Cu bimetallic nanoparticles for the ethanol oxidation reaction on three conducting polymers: poly-ortho-phenylenediamine, poly-meta-phenylenediamine, and poly-para-phenylenediamine. X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), and Electrochemical Impedance Spectroscopy (EIS) were used to analyze the modified electrodes. A series of bimetallic Ni–Cu nanoparticles with tunable ratios were successfully synthesized by simply changing the concentrations of Nickel and Copper. It has been confirmed that the best Ni/Cu molar ratio was 25% in the aspect of catalytic performance. The electrocatalyst exhibited an excellent catalytic activity with an anodic current of 70.5 mA cm?2 at the lowest onset potential of 0.39 V with impressive stability. Ni4Cu1/PpPD should be considered as a good alternative to noble metal anode catalyst.  相似文献   
4.
Pt–MoO3 was synthesized by microwave-assisted chemical reduction. The physicochemical characterization showed that the electrocatalyst contained nanoparticles of Pt and clusters of MoO3. The average particle size of the catalytic material was 2.5 nm. The electrochemical results showed that the Pt–MoO3/C was suitable to carry out the electrooxidation reactions of ethanol and methanol indistinctly, avoiding CO poisoning. It was possible to compare the results with commercial Pt/C. The synthesized material showed a better electrochemical performance. Different simulations were performed using the Nernst equation to evaluate the influence of temperature, internal resistance, and the current density losses as a function of the fuel used. The theoretical results indicated that the electrical power of the mono-cell improves by 21.5% when the energy vector is changed from methanol to ethanol at the maximum power point, obtaining an electrical potential change ΔE = 87.02 mV and a variation of the electric power of Δp = 114.14 mW cm?2. The use of dual fuels could improve the performance of experimental fuel cells.  相似文献   
5.
This study assesses a sustainable solution to greenhouse gases (GHGs) mitigation using constructed wetland-microbial fuel cells (CW-MFC). Roots of wetland plant Acorus Calamus L. are placed in biological anode to better enable anode microorganisms to obtain rhizosphere secretion for power improvement. Three selected cathode materials have a large difference in GHG emissions, and among them, carbon fiber felt (CFF) shows the lowest emissions of methane and nitrous oxide, which are 0.77 ± 0.04 mg/(m2·h) and 130.78 ± 13.08 μg/(m2·h), respectively. The CFF CW-MFC achieves the maximum power density of 2.99 W/m3. As the influent pH value is adjusted from acidic to alkaline, the GHGs emissions are reduced. The addition of Ni inhibits GHGs emission but decreases the electricity, the power density is reduced to 1.09 W/m3, and the methane and nitrous oxide emission fluxes decline to 0.20 ± 0.04 mg/(m2·h) and 15.49 ± 1.86 μg/(m2·h), respectively. Low C/N ratio reduces methane emission, while high C/N ratio effectively inhibits nitrous oxide emission. At the influent pH 8 and C/N = 5:1, the methane emission flux is approximately 10.60 ± 0.27 mg/(m2·h), and the nitrous oxide emission flux is only 10.90 ± 1.10 μg/(m2·h). Based on the above experimental results by controlling variable factors, it is proposed that CW-MFC offers an environment-friendly solution to regulate GHG emissions.  相似文献   
6.
对浸矿后离子型稀土原地浸矿场采用清水进行淋洗,在184天的清水淋洗过程中,尾水氨氮值从最开始的507mg/L,降低至140mg/L,淋洗尾水pH4.52~3.10。淋洗尾水采用两级反渗透膜分离,既回收有价资源稀土,又能使出水氨氮达标。结果表明,产水氨氮浓度稳定低于15mg/L,对稀土的截留率高于98.25%,浓水中稀土离子平均浓度313.4mg/L,可进一步回收稀土资源。  相似文献   
7.
This work describes facile synthesis of a porous polymeric material ( T-HCP ) using readily available reagents. Specifically, T-HCP is a thermally stable and hypercrosslinked polymer (HCP) that is essentially microporous with a high BET specific surface area (940 m2 g?1). Triptycene based polymers are known to feature internal free volume. Thus, the incorporation of triptycene units and extensive crosslinking by an external cross-linker in T-HCP makes it a promising adsorbent for small gas capture applications. Experimental results show that T-HCP demonstrated good CO2 capture capacity of 132 mg g?1 (273 K, 1 bar). Molecular hydrogen storage capacity of T-HCP is estimated to be 17.7 mg g?1 (77 K, 1 bar). T-HCP revealed high CO2/N2 selectivity (up to 63) as well as promising CO2/CH4 (up to 9.1) selectivity suggesting its potential applicability for CO2 separation from flue and natural gases.  相似文献   
8.
Polyelectrolyte complex (PEC) membranes prepared from poly(styrene sulfonate) (PSS) and poly(diallyldimethylammonium chloride) (PDADMAC) were modified by crossflow polymerization of aniline (ANI). The PEC membranes were used as separators in a two-compartment setup where ANI monomer and ammonium persulfate (APS) oxidant diffused through the membranes to form polyaniline (PANI). APS and ANI having different distributions throughout the membranes, the reaction led to the asymmetric polymerization of PANI on one face of each PEC membrane thus producing Janus membranes. Due to the excess PANI content, the membrane displayed distinct asymmetric electrical conductivities on each face. Interestingly, very different ANI polymerizations were obtained when nonstoichiometric PEC membranes having different molar ratio of cationic and anionic polyelectrolytes (P+:P? represents PDADMAC:PSS) were used and transport of APS was fastest through the 2:1 PEC when compared to the 1:2 PEC. In all experiments, the polymerization was most intense on the ANI side of the membranes. Also, the influence of NaCl both during PEC fabrication and during polymerization was studied and found to have some effect on the solute permeability. Results showed that a higher content of PANI was formed on PEC membranes having excess P+ and with no NaCl added during PEC fabrication. Although X-ray diffraction confirmed the presence of PANI on both sides of each membrane, scanning electron microscopy images demonstrated that both sides of each membrane had different PANI content deposited. Electrical conductivity measurements using a four-point probe setup also showed that the PEC–PANI exhibits asymmetric electrical property on different sides. © 2021 Society of Industrial Chemistry.  相似文献   
9.
《Ceramics International》2022,48(18):25849-25857
The continuous Nextel? 720 fiber-reinforced zirconia/alumina ceramic matrix composites (CMCs) were prepared by slurry infiltration process and precursor infiltration pyrolysis (PIP) process. The introduction of submicron zirconia powders into the aqueous slurry was optimized to offer comprehensively good sintering activity, high thermal resistance and good mechanical properties for the CMCs. Meanwhile, the zirconia and alumina preceramic polymers were used to strengthen the porous ceramic matrix through the PIP process. The final CMC sample achieved a high flexural strength of 200 MPa after one infiltration cycle of alumina preceramic polymer and thermal treatment at 1150 °C for 2 h. The flexural strength retention of the improved CMC sample was 104% and 89% respectively after thermal exposure at 1100 °C and 1200 °C for 24 h.  相似文献   
10.
曹辉林 《金属矿山》2022,51(2):231-236
针对赤泥等固体废弃物对环境危害性大且利用率低等问题,以碱激发赤泥-矿渣基地聚物注浆材料为 研究对象,研究了不同掺量的聚羧酸(PA)减水剂、醛酮缩合物(AKC)减水剂和萘系(N)减水剂对材料凝结时间、流动 性及强度等的影响,并通过 XRD、傅里叶红外光谱及 SEM 等设备对减水剂的作用机理进行研究。 结果表明:减水剂增 强了材料的流动性但降低了材料的剪切应力;N 和 PA 减水剂能缩短材料的凝结时间,但 AKC 减水剂会延长材料的凝 结时间;N 和 AKC 减水剂能提高材料的强度,但 PA 减水剂会降低材料的强度;N 减水剂对材料的综合性能提升效果 更加明显,其最优掺量为 0. 7%;减水剂对赤泥-矿渣基地聚物性能提升的作用机理主要是促进地聚合物凝胶的形成。 研究成果为拓展赤泥在工程上的使用途径和效率提供了理论指导。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号