首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10489篇
  免费   956篇
  国内免费   711篇
电工技术   177篇
综合类   856篇
化学工业   1196篇
金属工艺   2950篇
机械仪表   427篇
建筑科学   284篇
矿业工程   183篇
能源动力   149篇
轻工业   1535篇
水利工程   280篇
石油天然气   210篇
武器工业   115篇
无线电   555篇
一般工业技术   1602篇
冶金工业   1238篇
原子能技术   87篇
自动化技术   312篇
  2024年   29篇
  2023年   269篇
  2022年   313篇
  2021年   389篇
  2020年   417篇
  2019年   351篇
  2018年   307篇
  2017年   390篇
  2016年   347篇
  2015年   373篇
  2014年   466篇
  2013年   686篇
  2012年   595篇
  2011年   718篇
  2010年   474篇
  2009年   555篇
  2008年   421篇
  2007年   634篇
  2006年   637篇
  2005年   470篇
  2004年   517篇
  2003年   395篇
  2002年   334篇
  2001年   289篇
  2000年   268篇
  1999年   198篇
  1998年   166篇
  1997年   184篇
  1996年   121篇
  1995年   106篇
  1994年   97篇
  1993年   103篇
  1992年   94篇
  1991年   75篇
  1990年   124篇
  1989年   91篇
  1988年   52篇
  1987年   21篇
  1986年   14篇
  1985年   16篇
  1984年   11篇
  1983年   5篇
  1982年   5篇
  1981年   12篇
  1980年   7篇
  1978年   3篇
  1975年   2篇
  1964年   1篇
  1957年   1篇
  1956年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Alumina platelets were arranged horizontally in submicron alumina particles by shear force in the flow of slurries during casting. The obtained alumina green bodies with platelets were pressureless-sintered in vacuum, producing ceramics with thoroughly oriented grains and high transmittance. The effects of sintering parameters on the densification, microstructure evolution, and orientation degree of alumina ceramics were investigated and discussed. The results showed that the densification, grain size, orientation degree, and in-line transmittance were increased with increasing sintering temperature. The enhancement of orientation degree was mainly coherent with grain growth. The grain-oriented samples exhibited a much higher in-line transmittance (at 600 nm) of 61 % than that of the grain random sample (29 %). Moreover, the transmission remained a high level in the ultraviolet range (<300 nm).  相似文献   
2.
《Ceramics International》2021,47(24):34278-34288
Materials exhibiting colossal dielectric constant are the most sought-after materials due to their variety of applications in various electronics industries. NiFe2O4 and LaFeO3 belonging to the spinel and perovskite structures, respectively, were coupled into a nanocomposite by adapting a one-pot sol-gel synthesis. The ratio of NiFe2O4:LaFeO3 was varied and the synthesized materials were studied for their dielectric behaviors. Interestingly, among the samples studied, the nanocomposite with the ratio of 1:2 of NiFe2O4–LaFeO3 exhibited a high dielectric constant value of 10390 at a frequency of 1 kHz with a several-fold increase in conductivity. The high conductivity resulted in a high dielectric loss. The origin of such a high dielectric constant and loss have been attributed to the Maxwell-Wagner type space charge polarization arising from the microstructure that consists of large and continuous grain boundaries, and the conducting phase at the interface, respectively.  相似文献   
3.
Templated grain growth is beneficial for piezoelectric materials, the properties of which become the best in their single crystalline form. Nevertheless, a textured ceramic prepared by a templated grain growth technique often fails in exhibiting as good properties as expected in single crystals even with a high degree of orientation factor. Here, we propose a new strategy for maximizing texturing effect by suppressing the growth of untextured matrix grains. The textured ceramics made by our method, so-called bi-templated grain growth, are featured by ultrahigh piezoelectric properties (d33 = ~1,031 pC/N, d?g = ~59,000, kp = ~0.76). A special emphasis is on the achieved electric-field-induced strain of 0.13 % at 1 kV/mm, which is as high as that of single crystals. This work demonstrates that not only the degree of texture but also the coarsening of untextured matrix grains should be well-controlled to best exploit the templated grain growth technique.  相似文献   
4.
Ferrites are materials of interest due to their broad applications in high technological devices and a lot of research has been focused to synthesize new ferrites. In this regard, an effort has been devoted to synthesize spinel Pr–Ni co-substituted strontium ferrites with a nominal formula of Sr1-xPrxFe2-yNiyO4 (0.0 ≤ x ≤ 0.1, 0.0 ≤ y ≤ 1.0). The cubic structure of pure and Pr–Ni co-substituted strontium ferrite samples calcinated at 1073 K for 3 h has been confirmed through X-ray diffraction (XRD). Average sizes of crystallites (18–25 nm) have been estimated from XRD analysis and nanometer particle sizes of synthesized ferrites have been further verified by scanning electron microscopy (SEM). SEM results have also shown that particles are mostly agglomerated and all the samples possess porosity. It has been observed that at 298 K, the values of resistivity (ρ) increase, while that of AC conductivity, dielectric loss, and dielectric constants decrease with increasing amounts of Pr3+ and Ni2+ ions. The values of dielectric parameters initially decrease with frequency and later become constant and can be explained on the basis of dielectric polarization. Electrochemical impedance spectroscopy (EIS) studies show that the charge transport phenomenon in ferrite materials is mainly controlled via grain boundaries. Overall, synthesized ferrite materials own enhanced resistivity values in the range of 1.38 × 109–1.94 × 109 Ω cm and minimum dielectric losses, which makes them suitable candidates for high frequency devices applications.  相似文献   
5.
The uniform refinement mechanisms and methods of deformed mixed and coarse grains inside a solution-treatment Ni-based superalloy during two-stage annealing treatment have been investigated.The two-stage heat treatment experiments include an aging annealing treatment(AT)and a subsequent recrystallization annealing treatment(RT).The object of AT is to precipitate some δ phases and consume part of storage energy to inhibit the grain growth during RT,while the RT is to refine mixed and coarse grains by recrystallization.It can be found that the recrystallization grains will quickly grow up to a large size when the AT time is too low or the RT temperature is too high,while the deformed coarse grains cannot be eliminated when the AT time is too long or the RT temperature is too low.In addition,the mixed microstructure composed of some abnormal coarse recrystallization grains(ACRGs)and a large number of fine grains can be observed in the annealed specimen when the AT time is 3 h and RT tem-perature is 980℃.The phenomenon attributes to the uneven distribution of δ phase resulted from the heterogeneous deformation energy when the AT time is too short.In the regions with a large number of δ phases,the recrystallization nucleation rate is promoted and the growth of grains is limited,which results in fine grains.However,in the regions with few δ phases,the recrystallization grains around grain boundaries can easily grow up,and the new recrystallization nucleus is difficult to form inside grain,which leads to ACRGs.Thus,in order to obtain uniform and fine annealed microstructure,it is a prereq-uisite to precipitate even-distributed δ phase by choosing a suitable AT time,such as 12 h.Moreover,a relative high RT temperature is also needed to promote the recrystallization nucleation around δ phase.The optimal annealing parameters range for uniformly refining mixed crystal can be summarized as:900℃×12 h+990℃×(40-60 min)and 900℃×12 h+1000℃×(10-15 min).  相似文献   
6.
While the challenges associated with the stability of metal halide perovskites are well known and intensely studied, variability in electronic properties represents an equally significant, yet seldom studied, challenge that could potentially slow or inhibit the commercial viability of these systems. In this work, the contactless characterization technique time-resolved microwave conductivity (TRMC) is used to quantify the variability in electronic properties of the prototypical perovskite, methylammonium lead iodide (MAPbI3) both between different samples, and at different locations within the same sample. Using scanning electron microscopy (SEM) and a quasi-automated image-analysis strategy, it is possible to evaluate the metrics of heterogeneity in surface microstructure and correlate them with the electronic properties as obtained by TRMC. Substantial intra-sample and inter-sample variation is observed in the mobility-yield product in samples prepared following differing protocols, and in samples prepared following identical protocols.  相似文献   
7.
8.
To gain insight into the ageing behavior of ultrafine grain(UFG)structure,the precipitation phenom-ena and microstructural evolutions of Mg-6Zn-1Y-0.4Ce-0.5 Zr(wt.%)alloy processed by sliding friction treatment(SFT)were systematically studied using hardness texting,transmission electron microscopy(TEM)equipped with high-angle annular dark-field scanning(HADDF-STEM),X-ray diffraction(XRD)and XRD line broadening analysis.The microhardness of the SFT-processed(SFTed)sample initially decreases from 109.6 HV to 104.8 HV at ageing for 8 h,and then increases to the peak-ageing point of 115.4 HV at 16 h.Subsequently,it enters the over-aged period.The un-SFTed sample,as the counterpart,follows a regular ageing behavior that increases from 89.9 HV to 99.6 HV when ageing for 12 h,and then drops.A multi-mechanistic model is established to describe the strengthening due to grain refinement,disloca-tion accumulation,precipitation etc.The analysis reveals that the temperature sensitive UFG structure has an obvious grain coarsening effect,which arouses the soft phenomenon in the early ageing stage.But precipitation hardening provides an excellent hardness enhancement for overcoming the negative influ-ence and helping to reach the peak-aged point.In our microstructural observations,a lot of equilibrium ultrafine MgZn2 precipitates precipitate along dislocations because defects can provide the favorable conditions for the migration and segregation of solute atoms.  相似文献   
9.
Sr0.9La0.1TiO3 based textured ceramics (SLTT-S3T) with a texture fraction of 0.81 are successfully fabricated by the reactive template grain growth method, in which Sr0.9La0.1TiO3/20 wt%Ti was used as matrix and 10 wt% plate-like Sr3Ti2O7 template seeds were used as templates. The phase transition, microstructure evolution, and the anisotropic thermoelectric properties of SLTT-S3T ceramics were investigated. The results show that the ceramics are mainly composed of Sr0.9La0.1TiO3 and rutile TiO2 phases. Grains grow with a preferred orientation along (h00). A maximum ZT of 0.26 at 1073 K was achieved in the direction perpendicular to the tape casting direction. The low lattice thermal conductivity of 1.9 W/(m K) at 1073 K was obtained decreased by 34%, 40%, and 38% compared with non-textured, SrTiO3 and Sr0.9La0.1TiO3 ceramics prepared by the same process, can be attributed to the enhanced phonon scattering by the complex multi-scale boundaries and interfaces. This work provides a strategy of microstructural design for thermoelectric oxides to decrease intrinsic lattice thermal conductivity and further regulate thermoelectric properties via texture engineering.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号