首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43414篇
  免费   4284篇
  国内免费   2891篇
电工技术   1777篇
综合类   4060篇
化学工业   6095篇
金属工艺   2871篇
机械仪表   1691篇
建筑科学   6499篇
矿业工程   1847篇
能源动力   1613篇
轻工业   3019篇
水利工程   1532篇
石油天然气   2215篇
武器工业   468篇
无线电   5068篇
一般工业技术   6539篇
冶金工业   2460篇
原子能技术   940篇
自动化技术   1895篇
  2024年   71篇
  2023年   715篇
  2022年   1184篇
  2021年   1474篇
  2020年   1515篇
  2019年   1307篇
  2018年   1126篇
  2017年   1480篇
  2016年   1417篇
  2015年   1526篇
  2014年   2360篇
  2013年   2526篇
  2012年   2916篇
  2011年   3221篇
  2010年   2491篇
  2009年   2574篇
  2008年   2408篇
  2007年   2984篇
  2006年   2741篇
  2005年   2266篇
  2004年   1938篇
  2003年   1699篇
  2002年   1452篇
  2001年   1176篇
  2000年   1054篇
  1999年   815篇
  1998年   646篇
  1997年   615篇
  1996年   514篇
  1995年   447篇
  1994年   381篇
  1993年   322篇
  1992年   249篇
  1991年   209篇
  1990年   181篇
  1989年   143篇
  1988年   102篇
  1987年   69篇
  1986年   44篇
  1985年   32篇
  1984年   36篇
  1983年   22篇
  1982年   19篇
  1981年   13篇
  1980年   21篇
  1979年   23篇
  1965年   5篇
  1963年   5篇
  1959年   9篇
  1951年   6篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
Ce:Y3Al5O12 transparent ceramics (TCs) with appropriate emission light proportion and high thermal stability are significant to construct white light emitting diode devices with excellent chromaticity parameters. In this work, strategies of controlling crystal-field splitting around Ce3+ ion and doping orange-red emitting ion, were adopted to fabricate Ce:(Y,Tb)3(Al,Mn)5O12 TCs via vacuum sintering technique. Notably, 85.4 % of the room-temperature luminescence intensity of the TC was retained at 150 °C, and the color rendering index was as high as 79.8. Furthermore, a 12 nm red shift and a 16.2 % increase of full width at half maximum were achieved owing to the synergistic effects of Tb3+ and Mn2+ ions. By combining TCs with a 460 nm blue chip, a warm white light with a low correlated color temperature of 4155 K was acquired. Meanwhile, the action mechanism of Tb3+ ion and the energy transfer between Ce3+ and Mn2+ ions were verified in prepared TCs.  相似文献   
2.
An improved glucose-chelator-albumin bioconjugate (GluCAB) derivative, GluCAB-2Mal, has been synthesized and studied for in vivo 64Cu-PET/CT imaging in breast cancer mice models together with its first-generation analogue GluCAB-1Mal. The radioligand works on the principle of tumor targeting through the enhanced permeability and retention (EPR) effect with a supportive role played by glucose metabolism. [64Cu]Cu-GluCAB-2Mal (99 % RCP) exhibited high serum stability with immediate binding to serum proteins. In vivo experiments for comparison between tumor targeting of [64Cu]Cu-GluCAB-2Mal and previous-generation [64Cu]Cu-GluCAB-1Mal encompassed microPET/CT imaging and biodistribution analysis in an allograft E0771 breast cancer mouse model. Tumor uptake of [64Cu]Cu-GluCAB-2Mal was clearly evident with twice as much accumulation as compared to its predecessor and a tumor/muscle ratio of up to 5 after 24 h. Further comparison indicated a decrease in liver accumulation for [64Cu]Cu-Glu-CAB-2Mal.  相似文献   
3.
High-density La0.9-xSrxK0.1MnO3 ceramics (LSKMO, A-site = La, Sr and K, 0 ≤ x ≤ 0.25) are successfully fabricated by using facile sol-gel method. Electrical properties are performed by using combination of phenomenological percolation (PP) model, double exchange (DE) mechanism, and Jahn-Teller (JT) effect. Moreover, X-ray diffraction and scanning electron microscopy are employed to analyze the structure and morphology of LSKMO ceramics. Valence states and ionic stoichiometry are assessed by using X-ray photoemission spectrometry. Results reveal that Sr2+ ions, substituting La3+ ions, significantly influenced DE mechanism and JT effect. In addition, Sr-doping plays essential role in improving electrical properties of LSKMO ceramics. At optimal doping content of x = 0.09, peak temperature coefficient of resistance (TCR) of the resistivity is found to be 11.56% K?1 at 297.15 K, which is optimal TCR for A-site K-occupied perovskite manganese oxides. These results confirm that polycrystalline LSKMO ceramics render high room-temperature TCR values due to Sr-doping.  相似文献   
4.
高熵形状记忆合金是在等原子比NiTi合金的基础上,结合高熵合金的概念,逐渐发展起来的一种新型高温形状记忆合金。近年来,已开发出了综合性能优异的(TiZrHf)50(NiCoCu)50系和(TiZrHf)50(NiCuPd)50系高熵形状记忆合金,引起了广泛的关注和研究兴趣。本文从物相组成、微观组织、马氏体相变行为、形状记忆效应和超弹性等角度出发,综述了高熵形状记忆合金的研究进展,并对高熵形状记忆合金未来的研究重点进行了展望。  相似文献   
5.
In this study, the destabilization resistance of Sc2O3 and CeO2 co-stabilized ZrO2 (SCZ) ceramics was tested in Na2SO4 + V2O5 molten salts at 750°C–1100 °C. The phase structure and microstructure evolution of the samples during the hot corrosion testing were analyzed with X-ray diffraction (XRD), Raman spectra, scanning electron microscopy (SEM), energy dispersive X-ray spectrum (EDS), and X-ray photoelectron spectroscopy (XPS). Results showed that the destabilization of SCZ ceramics at 750 °C was the result of the chemical reaction with V2O5 to produce m-ZrO2 and CeVO4, and little ScVO4 was detected in the Sc2O3-rich SCZ ceramics. The primary corrosion products at 900 °C and 1100 °C were CeO2 and m-ZrO2 due to the mineralization effect. The Sc2O3-rich SCZ ceramics exhibited excellent degradation resistance and phase stability owing to the enhanced bond strength and the decreased size misfit between Zr4+ and Sc3+. The destabilization mechanism of SCZ ceramic under hot corrosion was also discussed.  相似文献   
6.
Chitinases catalyze the degradation of chitin, a polymer of N-acetylglucosamine found in crustacean shells, insect cuticles, and fungal cell walls. There is great interest in the development of improved chitinases to address the environmental burden of chitin waste from the food processing industry as well as the potential medical, agricultural, and industrial uses of partially deacetylated chitin (chitosan) and its products (chito-oligosaccharides). The depolymerization of chitin can be achieved using chemical and physical treatments, but an enzymatic process would be more environmentally friendly and more sustainable. However, chitinases are slow-acting enzymes, limiting their biotechnological exploitation, although this can be overcome by molecular evolution approaches to enhance the features required for specific applications. The two main goals of this study were the development of a high-throughput screening system for chitinase activity (which could be extrapolated to other hydrolytic enzymes), and the deployment of this new method to select improved chitinase variants. We therefore cloned and expressed the Bacillus licheniformis DSM8785 chitinase A (chiA) gene in Escherichia coli BL21 (DE3) cells and generated a mutant library by error-prone PCR. We then developed a screening method based on fluorescence-activated cell sorting (FACS) using the model substrate 4-methylumbelliferyl β-d-N,N′,N″-triacetyl chitotrioside to identify improved enzymes. We prevented cross-talk between emulsion compartments caused by the hydrophobicity of 4-methylumbelliferone, the fluorescent product of the enzymatic reaction, by incorporating cyclodextrins into the aqueous phases. We also addressed the toxicity of long-term chiA expression in E. coli by limiting the reaction time. We identified 12 mutants containing 2–8 mutations per gene resulting in up to twofold higher activity than wild-type ChiA.  相似文献   
7.
8.
Utilizing inner-crystal piezoelectric polarization charges to control carrier transport across a metal-semiconductor or semiconductor–semiconductor interface, piezotronic effect has great potential applications in smart micro/nano-electromechanical system (MEMS/NEMS), human-machine interfacing, and nanorobotics. However, current research on piezotronics has mainly focused on systems with only one or rather limited interfaces. Here, the statistical piezotronic effect is reported in ZnO bulk composited of nanoplatelets, of which the strain/stress-induced piezo-potential at the crystals’ interfaces can effectively gate the electrical transport of ZnO bulk. It is a statistical phenomenon of piezotronic modification of large numbers of interfaces, and the crystal orientation of inner ZnO nanoplatelets strongly influence the transport property of ZnO bulk. With optimum preferred orientation of ZnO nanoplatelets, the bulk exhibits an increased conductivity with decreasing stress at a high pressure range of 200–400 MPa, which has not been observed previously in bulk. A maximum sensitivity of 1.149 µS m−1 MPa−1 and a corresponding gauge factor of 467–589 have been achieved. As a statistical phenomenon of many piezotronic interfaces modulation, the proposed statistical piezotronic effect extends the connotation of piezotronics and promotes its practical applications in intelligent sensing.  相似文献   
9.
The effect of an external electric field on laser-generated plasma has been studied. It is observed that the laser-generated plasma can be used for the ignition of a spark in the presence of a low voltage external electric field. An eight-fold emission intensity enhancement in Cu Ⅰ spectral lines are measured as compared to the signal intensity in the absence of an external electric field.The plasma parameters remain the same initially, up to a few microseconds after the generation of plasma, and this feature makes it more interesting for the quantitative analysis of any sample using laser induced breakdown spectroscopy(LIBS). In the presence of an external electric field,fluctuations(contraction and expansion) in the laser-generated plasma are observed which increase the plasma decay time and consequently result in enhanced signal intensity.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号