首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  电工技术   2篇
  2017年   2篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
为实现对万能式断路器分合闸故障的非侵入式监测和诊断,以分合闸过程中所产生的包含丰富机械特性信息的振动作为信号来源,提出一种基于振动信号互补总体平均经验模态分解(CEEMD)-样本熵和相关向量机(RVM)相结合的万能式断路器故障诊断方法.该方法首先将振动信号通过改进的小波包阈值去噪算法处理;其次采用CEEMD提取若干个反映断路器状态信息的固有模态函数(IMF)分量,依据各IMF分量的能量分布特点,选择其中前7阶进行处理,计算其样本熵形成有效的特征样本;最后通过计算不同故障类型的样本间欧氏距离来定量评价类间样本平均距离,建立基于RVM的二叉树多分类器,诊断得出万能式断路器故障类型.基于所设计的分合闸典型故障模型进行实验.与其他方法的对比实验表明,所提方法可利用相对较少的故障数据样本实现对万能式断路器故障类型的识别并具有较高的识别率;同时实验表明,辅以同一故障类型的样本间欧氏距离,可实现对分合闸故障中三相不同期故障严重程度的初步评估.  相似文献
2.
为可靠地进行万能式断路器机械故障诊断,在基于振动信号故障诊断的基础上,提出了一种多特征融合与改进量子粒子群(QPSO)优化的相关向量机(RVM)相结合的万能式断路器分合闸故障振声诊断方法.首先,对振声信号进行小波包软硬阈值结合去噪预处理,并利用互补总体经验模态分解算法对处理后的振声信号进行分解,提取固有模态函数能量系数、样本熵、功率谱熵,并组成多特征参数;然后,通过组合核函数核主元分析对多特征参数降维,并将其特征融合组成特征向量作为RVM的输入,解决单一特征识别断路器分合闸故障的低准确率和低稳定性;最后,利用改进QPSO优化分类模型参数,建立基于RVM的次序二叉树模型对断路器故障进行辨识.实验结果表明,该方法能有效提升不同故障状态下诊断结果的可靠性.  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号