首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   2篇
电工技术   5篇
  2023年   1篇
  2020年   2篇
  2019年   1篇
  2018年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
谭笑  高旭泽 《电测与仪表》2020,57(15):80-87
电力电缆的局部放电监测是保证电缆安全运行的重要技术手段。然而,传统有源有线的局部放电在线监测方法难以适用于敷设结构复杂、分布区域广且对成本较为敏感的电缆网络。针对此问题,设计了一种基于物联网技术的低功耗分布式电缆局部放电在线监测系统。在考虑传感网络可扩展性和可接入性基础上,设计了电缆局部放电监测物联网络的总体框架;为满足传感器节点低功耗、长续航的要求,对高频电流传感器、低功耗信号处理和电源管理、数据通信等物联传感网络基本要素进行了优化设计。根据上述研究实现了基于物联网的电力电缆的局部放电分布式监测系统的设计与应用。  相似文献   
2.
近年来由于绝缘子沿面放电引起的绝缘故障较为多见,冲击耐压及冲击下局部放电检测是绝缘考核和诊断的有效手段。文中采用IEC 60060-3推荐的振荡型雷电及操作冲击和工频交流电压,针对110 k V气体绝缘组合开关设备(GIS)真型绝缘子金属微粒缺陷模型进行了局部放电特性研究。在工频交流(AC)电压下,局部放电起始电压和闪络电压的差值小于2种振荡型冲击电压,其随气压增大而增加;在冲击电压下,局部放电大多发生在振荡周期的上升沿处,在电压波谷处会出现相反极性的局部放电脉冲;金属颗粒位置对放电量、放电重复率等影响较大。结论表明,相比于工频交流电压,GIS绝缘子表面金属颗粒缺陷在外施电压为振荡型冲击电压时易产生局部放电,说明了振荡型冲击电压局部放电检测具有较高缺陷检出能力。  相似文献   
3.
针对110 k V真型GIS试品建立了超高频检测(UHF)、超声检测(AE)及高频电流检测(HFCT)的局部放电综合检测系统,并量化对比研究了上述3种局部放电检测方法对不同类型和不同尺度绝缘缺陷检测的有效性。结果表明:当金属尖端长度小于5 mm时,各类测量方法都难以检测到额定电压下的放电脉冲,当金属尖端长度大于5 mm时,HFCT和UHF相对AE较为灵敏,HFCT和UHF能检出的最小缺陷尺度相同;当存在悬浮电极放电时,UHF最为灵敏;对于高压侧绝缘子表面颗粒缺陷,HFCT最为灵敏,当表面颗粒靠近地侧时,AE灵敏度最高;各检测方法均能在运行电压下发现尺度在0.1~2 mm的气隙缺陷。此外,在可检出绝缘缺陷的最小尺度下,HFCT和UHF可分别响应2 p C和10 p C以上的金属尖端、金属颗粒以及绝缘子气隙局部放电,而AE响应相对滞后;各检测方法的信号强度随视在放电量的变化趋势不同,UHF对放电量变化的响应最为敏感。  相似文献   
4.
为研究油纸绝缘沿面放电过程中相关物理量的变化规律,明确其与沿面放电发展阶段的关系,该文建立一套能够对放电过程中电、磁、声、光等多物理量进行同步测量的联合检测实验系统。实验对比不同检测方法的有效性,并获得沿面放电过程中多物理信号的发展规律。在此基础上,提取不同物理信号的特征参量,通过层次聚类法对沿面放电发展过程进行阶段划分,并给出相应的物理描述和阶段特征。结果表明:沿面放电缺陷下,不同检测方法的灵敏度存在差异,其中超声法的灵敏度最高;基于相应的多物理特征参量,通过聚类可以将沿面放电发展过程划分为放电起始阶段、放电发展阶段和预击穿阶段,整个过程的阶段变化与绝缘状态和电场分布有关;相比于传统单一手段的检测方法,综合利用多物理信号能够更有效地判断故障发展的严重程度。  相似文献   
5.
局部放电测量广泛应用于各种电力设备的绝缘状况诊断中,对于XLPE电缆,局部放电可以检测到各种绝缘缺陷,例如电缆加工、运行以及安装过程中的人为缺陷,以及绝缘层中的气隙和电树枝老化。然而,当局部放电脉冲在电缆中传播时,由于衰减的原因,脉冲波形发生了变化。因此,对于电缆局部放电测量,了解局部放电脉冲在电缆中传播时的变化规律是非常关键的,因此本文针对电缆局部放电脉冲传播时,脉冲波形的变化进行了深入分析,并且讨论的了不同耦合带宽对信号检测的影响,得出:当电缆发生局部放电时,脉冲信号幅值随着传播距离的增加迅速衰减,但脉冲视在放电量衰减幅度相对较小;同时,宽带耦合具有较高的灵敏度,但是其电荷校准曲线误差较大,并且会导致信噪比降低,缺陷检出度下降;窄带耦合虽然能够获得较为准确地电荷校准曲线,却会导致脉冲波形发生叠加,影响故障点定位;所以,在实际应用中,需要根据实际需求,确定检测带宽。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号