首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   477篇
  免费   87篇
  国内免费   22篇
电工技术   451篇
综合类   18篇
化学工业   14篇
金属工艺   2篇
机械仪表   5篇
建筑科学   9篇
矿业工程   1篇
能源动力   36篇
石油天然气   1篇
无线电   18篇
一般工业技术   8篇
自动化技术   23篇
  2024年   12篇
  2023年   76篇
  2022年   122篇
  2021年   111篇
  2020年   85篇
  2019年   97篇
  2018年   55篇
  2017年   5篇
  2016年   3篇
  2015年   8篇
  2014年   7篇
  2013年   3篇
  2012年   1篇
  2000年   1篇
排序方式: 共有586条查询结果,搜索用时 15 毫秒
1.
基于延时信号消除(DSC)的锁相环(PLL)技术可以实现指定次谐波和负序分量的影响消除,快速捕获非理想电网电压正序分量的相位.然而受限于现场应用的采样速率,延时信号往往无法按预期精准实现,延时误差不可避免.而目前针对这种延时误差对DSC PLL的影响及在此基础上的参数选型约束未见报道.这里在描述DSC对正、负序分离及谐波消除机理的基础上,定量分析了延时误差的影响,并以此为依据,给出了基于给定精度约束的延时误差限值计算方法和采样频率选型原则,指导DSC锁相技术应用时的参数设计.最后通过实验验证了理论分析和参数设计方法的有效性与准确性.  相似文献   
2.
随着风电穿透功率不断增大,系统对于风电出力的控制要求进一步提升,且对无功功率有着更为灵活的要求。双馈感应发电机(double-fed induction generator, DFIG)转速与电网频率解耦,难以在电网的频率、电压波动过程中提供快速、精准的支持。为增强单台双馈风电机组的并网致稳性,将超级电容器储能单元接入DFIG的直流母线处参与电网一次频率调节,针对储能需求讨论阵列配置。并通过增加网侧变流器(grid side converter, GSC)电压下垂控制,实现双馈感应发电机组一次调压功能,挖掘DFIG自身调节能力。通过搭建风电场-同步机系统模型,证明其对于系统稳定性的提高;最后通过10 kW双馈感应发电机实验平台,验证了所提控制策略的有效性与准确性。  相似文献   
3.
“双高”电力系统中,并网风机机端故障电压越发呈现高、低连续振荡的特点,这增加了机组穿越难度和脱网概率。该文基于虚拟同步机(virtual synchronous generator,VSG)技术设计了一种直驱风机高、低电压连续故障穿越策略:有功控制通过改进VSG技术设计功率补偿项,对外增加系统频率支撑,对内减少母线电压波动;无功控制以行业标准为依据,通过向电网注入无功电流支撑电压恢复。其中,低穿时通过超速限功率、紧急变桨等变功率跟踪方法快速、精准平衡有功流动,高穿时通过动态调节直流母线电压增加网侧逆变器可控性,以此提高机组故障连续穿越能力。相较于传统电流源特性的双闭环控制,应用电压源特性的VSG技术有利于提升故障期间风机的电网支撑作用。设计的穿越策略可持续性更强,能承受长时间、多频次、大范围的连续故障电压冲击,提高了机组在恶劣工况下的并网生存能力。最后结合Matlab/Simulink仿真平台进行实验验证。  相似文献   
4.
传统的失步解列控制无法适应多变的运行方式和复杂的失稳模式,实现数据驱动的电网主动解列断面快速定位具有重要意义。为此,结合复杂网络社团检测理论和电气距离,提出一种基于标签传播算法的主动解列断面快速定位方法。基于等值两机系统联络断面电气距离对振荡中心位置有主要影响的机理,依据支路导纳建立图数据的相似性权重矩阵。根据同调机群在线辨识的分群结果标注同步发电机节点的类别标签。使用基于调和函数的标签传播算法对未标注节点进行半监督节点分类,不同类节点之间的边即所定位的解列断面。通过IEEE118节点系统算例和东北电网实际系统的仿真分析,验证了所提方法的可行性和有效性。该方法的计算速度非常快,具有较好的工程实用价值。  相似文献   
5.
随着电动汽车的应用推广,换电站的调度优化逐渐成为研究热点。传统的基于换电需求预测值的调度策略在实际应用中面临着难以适应动态干扰因素、预测误差累积等问题。为了解决这些问题,提出了一种基于带基线的蒙特卡罗策略梯度法的换电站实时调度策略,用于优化换电站的充放电策略以及响应电池数量。提出了带基线的蒙特卡罗策略梯度强化学习,并为换电站实时调度问题选取合适的状态空间和动作空间;设计了奖励函数对智能体进行离线训练,从电池状态数据、分时电价和排队电动汽车数量中学习得到最优策略网络;在离线训练好的模型基础上进行实时调度策略测试。基于换电站的服务可用率和经济效益验证了所提调度策略的有效性和经济性,算例结果表明所提策略能对电网负荷起到一定的削峰填谷作用。  相似文献   
6.
电动汽车充电站大规模建设下,协调充电站的充电功率对配电网的安全经济运行具有十分重要的意义。受制于不同充电站之间的利益冲突以及实时控制技术的瓶颈,电网公司难以对充电站实行集中管理。文中基于去中心化交易模式,提出了充电站参与日前电力市场的购电策略。首先,借助区块链存储技术,设计了适用于充电站日前购电协议的智能合约。然后,采用二阶锥规划求解交流最优潮流模型得到不同时间配电网各节点用电的边际成本,并以此为潮流运行点构建线性化阻塞管理模型,从而得到配电网节点边际电价。最后,考虑电动汽车的停泊特性,以购电成本最小为目标建立了充电站分散式优化调度模型并根据价格信号分散求解。在IEEE 33节点配电网系统中进行了充电站购电策略仿真,仿真结果表明,所提出的充电站日前购电策略能实现分散式调度,改善了配电网的潮流分布;同时,节点边际电价能够作为公平的价格信号引导充电站有序充电,在保证配电网安全经济运行的同时降低充电站的购电成本,提高充电机的利用率。  相似文献   
7.
高压直流GIL盆式绝缘子非线性电导参数优化   总被引:1,自引:0,他引:1  
直流气体绝缘输电管道(direct current gas insulated lines,DC-GIL)电场分布受温度梯度、运行电压、金属微粒等诸多因素影响,具有非常大的不确定性,给绝缘设计和运行稳定性带来挑战。非线性电导材料能够自适应地调控直流设备电场分布,有望突破DC-GIL绝缘子设计瓶颈。为了兼顾电场调节作用和损耗特性,建立100 kV直流GIL仿真模型,对比研究运行工况下传统绝缘子、表层电导非线性(surface nonlinear conductivity,SNC)绝缘子和体电导非线性(bulk nonlinear conductivity,BNC)绝缘子的电场分布及损耗功率。通过分析非线性电导(nonlinear conductivity,NC)参数对气固沿面电场调控作用和损耗特性的影响规律,发现SNC绝缘子的电场畸变率先随着欧姆区电导率和非线性系数的增大而快速下降,而后趋于平稳。理想情况下,SNC绝缘子的NC参数应处于电场调节作用的"饱和临界线",且欧姆区电导率最低。而BNC绝缘子的电场调节作用仅依赖于非线性系数,降低欧姆区电导率可降低绝缘子功率损耗。缩比绝缘子实验结果证实了SNC绝缘子非线性参数直接影响DC-GIL沿面闪络电压。  相似文献   
8.
目前继电保护状态监测模型均利用静态故障概率进行装置失效率预测,未能计及设备老化与检修对失效率的动态影响,预测结果不可靠。对此,提出一种基于三参数威布尔分布动态优化的马尔可夫链状态预测方法。首先利用灰色-粒子群支持向量机算法求解更为精确的继电保护装置失效率函数,随后将其用于动态修正保护状态马尔可夫链中各运行状态之间的转移概率,最终实现对线路保护未来运行状态的推演。仿真结果证明,所求解的失效率函数相比传统方法求解的函数具有更高的计算精度,而动态优化马尔克夫链模型实现了设备老化与检修的动态量化处理。研究状态转移概率计算结果符合设备运行工况,可以有效预测设备规定投运年限内各时间点的运行状态。该方法对于保护检修策略的优化具有一定的指导意义。  相似文献   
9.
岳国良  路艳巧  常浩  孙翠英 《中国电力》2019,52(11):138-144,174
目前电力巡检主要是采用无人机巡检的方式,针对无人机巡检获取的图像识别过程中,电力设备旁的杂草可能会造成安全隐患,需要对图像中的杂草进行识别。针对电力巡检的场景,提出了一种基于可见光巡检图像的杂草智能识别方法,以可见光巡检图像中杂草的特征为基础,结合卷积神经网络方法,解决可见光巡检图像中电力设备附近的杂草识别问题。通过对图像进行样本数据增广和预处理,接着引入区域生成网络,再对图像提取固定个数候选框的图像特征,和改进的图像分类网络连接在一起,得到最终的卷积神经网络模型。实验表明其准确率可以达到97.98%,检测一幅600×600大小图像需要花费的平均时间约为0.256 s,在保证了准确率的同时达到了高效识别的要求。  相似文献   
10.
为研究分布式光伏对线路自动重合闸的影响,从重合闸动作过程中分布式光伏锁相环的动态特性出发,分析了逆变器在重合闸动作过程中的暂态过程以及分布式光伏输出特性。然后根据光伏容量与本地负荷的不同匹配程度以及不同故障位置,分别讨论了光伏接入对于重合闸的影响。最后给出了考虑分布式光伏接入的重合闸配置方式。建议在重合闸时间整定上考虑孤岛保护动作及断路器完全断开的时间。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号