首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9753篇
  免费   1067篇
  国内免费   177篇
电工技术   7036篇
综合类   474篇
化学工业   50篇
金属工艺   209篇
机械仪表   351篇
建筑科学   157篇
矿业工程   100篇
能源动力   478篇
轻工业   63篇
水利工程   60篇
石油天然气   20篇
武器工业   17篇
无线电   1205篇
一般工业技术   141篇
冶金工业   71篇
原子能技术   7篇
自动化技术   558篇
  2024年   17篇
  2023年   305篇
  2022年   297篇
  2021年   338篇
  2020年   232篇
  2019年   352篇
  2018年   172篇
  2017年   300篇
  2016年   394篇
  2015年   438篇
  2014年   859篇
  2013年   674篇
  2012年   836篇
  2011年   744篇
  2010年   563篇
  2009年   512篇
  2008年   446篇
  2007年   435篇
  2006年   383篇
  2005年   361篇
  2004年   419篇
  2003年   334篇
  2002年   247篇
  2001年   206篇
  2000年   171篇
  1999年   115篇
  1998年   93篇
  1997年   106篇
  1996年   108篇
  1995年   85篇
  1994年   63篇
  1993年   51篇
  1992年   82篇
  1991年   82篇
  1990年   79篇
  1989年   79篇
  1988年   9篇
  1987年   8篇
  1986年   1篇
  1985年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
2.
3.
4.
为获取良好的路感模拟执行器响应性能,从提高路感模拟用永磁同步电机的动态电流响应速度和降低稳态时的电流波动角度出发,针对数字电机控制固有延时问题和逆变器输出饱和问题应用三步非线性方法设计了一种电流控制(TSPCC)算法。三步非线性方法具有对参数不过分敏感和易于离散系统工程实现的优点,将逆变器的输出饱和转化成基于模型的动态饱和限制引入到动态前馈控制和误差反馈控制中以获得最优的电流响应速度,用下一拍电流预测值代替当前传感器采集值以降低由于延时引起的电流超调和波动。仿真和试验结果表明:该算法可显著提高电流响应速度和降低稳态时的电流波动,适合用于实现平滑的手感和实时的路感。  相似文献   
5.
6.
7.
近年来,为了减小共模电压对电压源逆变器的影响,模型预测共模电压抑制方法得到广泛研究。然而,常规的电压源逆变器模型预测共模电压抑制方法每个控制周期仅采用一个非零电压矢量作用,导致其电流谐波较大。为此,提出了一种混合多矢量模型预测共模电压抑制方法。首先给出了所提多矢量模型预测共模电压抑制方法的实现原理。其次详细分析了死区和电流纹波对共模电压的影响,并进一步对所提多矢量法进行改进。改进的方法在电流扇区7内使用单个非零电压矢量作用,而在其他扇区内使用多个非零电压矢量作用,从而不仅可以完全将共模电压限制在±Vdc/6之内,而且可以减小电流的总谐波畸变率。仿真和实验结果验证了该方法的有效性。  相似文献   
8.
9.
针对电力机车上辅助逆变器运行时输入阻抗与直流侧LC滤波器输出阻抗不匹配导致直流侧振荡的问题进行分析.介绍了一种辅助逆变器结构及控制策略,基于阻抗不匹配导致的直流侧不稳定机理,提出了电压瞬时值控制下逆变器的输入阻抗建模方法,并依照阻抗匹配理论设计了逆变器的部分主要参数.通过MATLAB/Simulink仿真与实物验证了辅助逆变器设计方法与稳定性分析的正确性与有效性.  相似文献   
10.
《电网技术》2021,45(4):1265-1272
单个光伏模块由3~4个子模块组成,在1个或多个子模块受局部阴影影响时,即使每个光伏模块配备一台微逆变器也会导致光伏功率损失。在桥式光伏微逆变器的基础上,增加了一个LC谐振单元以及与子模块数量匹配的倍压整流器,形成了一个不需单独控制的均压器结构。该均压器可以对受局部阴影影响的子模块补偿电流,使得各子模块输出电压尽量保持接近,从而实现光伏模块输出功率稳定在最大功率点。分析了均压器的工作模态以及参数设计准则,通过仿真与实验样机验证了均压器在提升光伏模块功率获取率上具有显著的优势。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号