首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  国内免费   2篇
  完全免费   9篇
  电工技术   37篇
  2022年   20篇
  2021年   13篇
  2020年   2篇
  2019年   2篇
排序方式: 共有37条查询结果,搜索用时 53 毫秒
1.
周自强  纪扬  苏烨  蔡钧宇 《中国电力》2019,52(4):104-110
随着电力行业的不断发展,高压电缆的铺排以及地下电缆隧道的建设与维护逐渐成为该领域中的热点问题之一。将迁移学习的核心思想与经典的卷积神经网络(LeNet5)相结合,提出了一种基于迁移学习卷积神经网络的电缆隧道锈蚀识别算法,实现了电缆隧道内部电源箱、风机等设备的锈蚀识别。该算法基于Tensorflow框架,能够有效地解决训练样本不足、训练时间冗长以及识别精度不高的问题。通过引入4种经典的目标识别算法进行对比实验,进一步验证了所提方案在网络训练时间以及识别精确度上的优势,为后续电缆隧道巡检机器人系统的构建提供了坚实的理论基础与实验支撑。  相似文献
2.
针对在使用深度学习对燃气轮机转子故障诊断过程中,因振动信号样本中正常运行数据多、故障数据少而使得模型故障诊断准确率低的问题,提出了一种采用深度迁移学习对燃气轮机转子进行故障诊断的方法。首先,使用典型行业样本数据集预训练第一层宽卷积核深度卷积神经网络(WDCNN)模型,给予模型初始的权重。其次,在源域中,使用某型燃气轮机试车获得的大量正常运行样本更新WDCNN模型的权重;在目标域中,利用源域训练的卷积层提取燃气轮机的正常和故障数据样本特征,然后使用支持向量机(support vector machines, SVM)进行分类识别,从而达到燃气轮机故障识别的目的。试车数据实验结果表明,该方法能够实现96%的识别准确率,验证了将轴承数据集预训练的深度学习模型迁移到燃气轮机转子领域进行故障诊断的可行性。  相似文献
3.
针对电力系统拓扑实时变化导致数据驱动状态估计器不可用的情况,提出一种基于深度迁移学习的数据驱动状态估计方法.将原拓扑海量历史数据训练得到的模型作为基础模型,当新拓扑实时量测数据更新时,加载和保存基础模型中特征提取层的权重和参数,只需要微调模型的全连接层,即可获得适应于新拓扑的神经网络,提高了数据驱动状态估计模型的自适应性和泛化性能.通过对IEEE标准系统和中国某实际省网的算例测试,并将其估计结果与加权最小二乘法和加权最小绝对值法进行比较.结果表明,在考虑拓扑时变性的情况下,该算法与上述2种物理算法相比具有更优的估计性能和估计效率.  相似文献
4.
陈剑  杜文娟  王海风 《电工技术学报》2021,36(22):4703-4715
风电场经柔性高压直流输电(VSC-HVDC)接入交流系统会产生次同步振荡(SSO),定位风电场SSO源并及时采取针对性抑制措施是迫切需要解决的问题.该文通过建立风电场经VSC-HVDC并网电力系统线性化模型,分析风电场因发生交互而诱发SSO的机理,提出基于对抗式迁移学习的风电场SSO源定位方法.该方法通过对仿真系统与实际系统的振荡特征进行对抗学习,缩小了仿真系统与实际系统的域差异,实现仿真系统离线建立的定位模型能够迁移到实际系统中进而对风电场次同步振荡源进行在线定位.通过设计多风电场经VSC-HVDC并网电力系统应用案例,验证分析了所提方法在不同系统中均具有较高的定位精度.这对电网调度运行基于广域测量系统识别振荡源或提供振荡抑制策略具有重要参考价值.  相似文献
5.
针对实际生产中轴承滚子原始故障数据量少,数据集不平衡的问题,提出一种数据增强策略对原始的数据集进行扩充,并结合U-Net框架和轻量级深度学习模型构建了一个端到端的轴承滚子语义分割模型方法.通过结合U-Net框架和轻量级深度学习模型MobileNetV1、DenseNet121构建了端到端的轴承滚子语义分割模型LS-MobileNetV1、LS-DenseNet121,将所提模型基于迁移学习策略进行了训练,与其他模型进行对比实验分析.结果表明,与现有方法相比,本文方法在具有更少参数量的情况下实现了更高的分割精度与更具鲁棒性的检测效果,验证了所提方法的有效性.  相似文献
6.
针对实际生产中轴承滚子原始故障数据量少,数据集不平衡的问题,提出一种数据增强策略对原始的数据集进行扩充,并结合U-Net框架和轻量级深度学习模型构建了一个端到端的轴承滚子语义分割模型方法.通过结合U-Net框架和轻量级深度学习模型MobileNetV1、DenseNet121构建了端到端的轴承滚子语义分割模型LS-MobileNetV1、LS-DenseNet121,将所提模型基于迁移学习策略进行了训练,与其他模型进行对比实验分析.结果表明,与现有方法相比,本文方法在具有更少参数量的情况下实现了更高的分割精度与更具鲁棒性的检测效果,验证了所提方法的有效性.  相似文献
7.
电能替代成为能源转型发展的重要趋势和关键路径,节能量的快速准确估计有利于电能替代项目的推广.为充分利用少量电能替代项目调试期数据快速估计节能量,提出了一种基于迁移学习的单位节能量在线估计方法.首先利用回归算法对大量基期样本展开训练,获得基期能耗模型;其次,利用基于迁移学习的回归算法对大量基期样本、少量调试期样本展开训练,并通过不同的权重更新策略迭代调整基期样本、调试期样本权重,获得调试期能耗模型;最后,采用归一法获得参考条件下能耗差值,即单位节能量.针对干燥领域的电能替代进行仿真分析,证明了所提方法的有效性,并研究了迭代次数、样本数目和样本组合对所提算法预测误差的影响.  相似文献
8.
在变电站二次侧管理中,压板承担着重要作用.文章提出了一种改进SSD图像识别算法,用以实现对压板状态的识别.新算法通过在SSD目标识别算法中,嵌入注意力机制,利用注意力机制挖掘了每个特征通道的重要程度,提升有用特征的权重,抑制了无效特征,提升了原有算法的检测精度.为了解决训练样本不足的问题,新算法通过对样本的扩充和迁移学习的方式,训练得到了提出的新SSD算法中的各个参数,并通过仿真实验进行验证.实验结果表明,改进后的SSD算法,其识别准确率达到96%,召回率达到94%,每秒可以检测23张图片,能够有效提升变电站内压板状态识别的效率.  相似文献
9.
针对红外图像中变电设备的识别和定位问题,提出了一种基于改进YOLOv3算法的变电设备检测方法.在现场采集的变电设备红外图像集的基础上,首先使用基于Retinex的图像增强算法以及阈值分割等图像处理方法对图像集进行预处理;然后基于变电设备红外图像对YOLOv3算法进行参数优化,并通过迁移学习的策略对改进YOLOv3网络进行训练以解决图像集样本数量较少的问题.实验结果表明,在样本数量较少的情况下,所提方法可以达到满意的检测准确率,并能快速地实现变电设备的识别和定位.  相似文献
10.
为了精准地识别无人机巡检图形中的小目标绝缘子及缺陷,本文提出了一种基于改进的深度学习目标检测网络(YOLOv4)的输电线路绝缘子缺陷检测方法.首先,通过无人机航拍及数据增强获得足够的绝缘子图像,构造绝缘子数据集.其次,利用绝缘子图像数据集训练YOLOv4网络,在训练过程中采用多阶段迁移学习策略和余弦退火学习率衰减法提高网络的训练速度和整体性能.最后,在测试过程中,对存在小目标的图像采用超分辨率生成网络,生成高质量的图像后再进行测试,以提高识别小目标的能力.实验结果表明,与Faster R-CNN和YOLOv3相比,所提算法在平均分类精度和每帧检测速率方面均有较大提升,性能表现优异.  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号