首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26132篇
  免费   2064篇
  国内免费   1297篇
电工技术   1770篇
综合类   2416篇
化学工业   3857篇
金属工艺   1353篇
机械仪表   1874篇
建筑科学   2654篇
矿业工程   765篇
能源动力   1401篇
轻工业   974篇
水利工程   965篇
石油天然气   2513篇
武器工业   211篇
无线电   3353篇
一般工业技术   1788篇
冶金工业   892篇
原子能技术   513篇
自动化技术   2194篇
  2024年   17篇
  2023年   733篇
  2022年   767篇
  2021年   817篇
  2020年   843篇
  2019年   824篇
  2018年   374篇
  2017年   522篇
  2016年   621篇
  2015年   808篇
  2014年   1672篇
  2013年   1223篇
  2012年   1538篇
  2011年   1575篇
  2010年   1438篇
  2009年   1451篇
  2008年   1703篇
  2007年   1543篇
  2006年   1309篇
  2005年   1314篇
  2004年   1094篇
  2003年   1028篇
  2002年   803篇
  2001年   746篇
  2000年   626篇
  1999年   608篇
  1998年   483篇
  1997年   460篇
  1996年   435篇
  1995年   393篇
  1994年   359篇
  1993年   324篇
  1992年   297篇
  1991年   235篇
  1990年   202篇
  1989年   211篇
  1988年   39篇
  1987年   23篇
  1986年   12篇
  1985年   1篇
  1984年   2篇
  1983年   4篇
  1982年   4篇
  1981年   2篇
  1980年   4篇
  1977年   1篇
  1965年   1篇
  1959年   4篇
排序方式: 共有10000条查询结果,搜索用时 156 毫秒
1.
为探究高水头大幅变化对混流式水轮机尾水管涡带的演化及对压力脉动的影响,以国内运行水头变幅最大的紫坪铺水电站水轮机为例,通过三维建模及定常和非定常条件的CFD分析,研究混流式水轮机在相同开度下最大水头、设计水头和最小水头三种工况的流动特点。结果表明,最小水头工况下尾水管内部流态较乱,尾水管中存在螺旋型空腔涡带,主要分布在直锥段。最大水头工况下尾水管的柱状涡带直径较大,且分布在直锥段和弯肘段,对机组振动和空化影响较大。研究结果阐明了非定常流动的特性,揭示了尾水管内压力脉动与涡带发展形态变化的规律,可为水轮机的安全可靠运行提供技术保障。  相似文献   
2.
为了减轻因流动加速腐蚀(FAC)引起的锅炉结垢加速、汽水系统管道厚度减小甚至爆裂现象,对超临界机组发生流动加速腐蚀的机理及其主要影响因素进行了研究,并讨论了管壁内表面粗糙度、蒸汽含汽率、pH值、溶氧量对FAC的影响,以及温度与pH值、温度与流速、pH值与溶解氧量、溶解氧量与氢电导率等影响因素之间的相互作用关系,最后结合实际电厂的运行数据验证了分析结果。研究表明:减小工质流速、管壁粗糙度和氢电导率,增大给水的pH值和溶解氧含量可以使FAC的腐蚀速率减小,超临界加氧处理时pH值应在8.9~9.2之间,溶解氧量范围为45~100μg/L,氢电导率的期望值在0.1μS/cm以下。由于各影响因素之间的作用十分复杂,本文只给出了大致范围和趋势,并未给出准确数据。  相似文献   
3.
为从本质上解释传热恶化现象,对当前流动加速效应及其判别式的研究进展进行了综述.对常规直管内所采用的流动加速判别式及其阈值进行总结,讨论了在分析传热特性时判别式存在的问题,进而探究了非常规管内的流动加速效应.目前,关于流动加速判别式及阀值的选取还未达成共识,当前的流动加速判别式均不能直接应用于非常规管.U形弯头的存在会抑制流动加速效应对传热的影响,而由直管理论推导得到的流动加速判别式不能反映该现象.  相似文献   
4.
汽轮机级内湿蒸汽凝结流产生的水滴会降低汽轮机做功功率,同时对汽轮机叶片带来潜在威胁。为研究不同负荷下汽轮机湿蒸汽内的非平衡凝结流动特性,采用非平衡凝结流动模型对汽轮机末两级叶片进行数值模拟计算。结果表明:不同负荷下,过冷度最大值均在次末级静叶,最大值为20K,然后逐级降低至0K;同一负荷下,汽轮机湿蒸汽级内的湿度大小逐渐增加,且末级动叶20%叶高处的湿度最大,最大值为9.5%;同一负荷下,湿蒸汽的成核率在次末级的静叶处达到最大值,且3种不同负荷下成核率最大值分别是50/(m3·s)、45/(m3·s)、13/(m3·s);凝结水滴的直径较小,在0~1μm之间。这对汽轮机通流部分设计和改造提供了理论参考。  相似文献   
5.
生丽莎  陈振乾 《化工进展》2022,41(7):3660-3675
多孔液体(porous liquids,PLs)作为一种新型材料,由于兼具固体多孔性和液体流动性,在催化、储能、石油化工、光电材料、气体吸附分离、气体储运、生物医药等领域具有广泛的应用前景。但多孔液体制备过程中存在合成路线复杂、有机溶剂挥发、液体黏度大、久置沉淀等问题,制约了多孔液体的进一步发展与应用。本文围绕多孔液体的设计制备过程中存在的可行性、稳定性、流动性及碳捕集性能等问题,阐述了多孔液体的种类,综述了近年来多孔液体制备方法和流程以及多孔液体内核外冠结构对稳定性、流动性的影响,概述了目前多孔液体在碳捕集方面的研究进展。最后对多孔液体在制备合成方面的挑战进行了归纳总结,在气体吸附分离及其他方面的应用进行了展望。  相似文献   
6.
利用微纳米孔隙三维可视化在线天然气充注物理模拟实验,结合孔隙尺度原位叠算技术、孔隙网络模拟技术和视渗透率理论,研究低渗(致密)气充注过程中气水流动与分布规律及其影响因素。通过精确刻画分析微纳米孔隙网络中的气水流动与分布特征及其变化可以发现,低渗(致密)气充注过程分为扩张和稳定两个阶段:扩张阶段形成了大孔喉先于小孔喉,孔喉中央先于边缘的气驱水连续流动模式,半径大于20μm的孔喉是气相充注的主要通道;随充注动力增加,孔隙边缘和更小孔隙中央的可动水持续被驱出,半径为20~50μm和半径小于20μm的孔喉先后主导了气相充注通道的扩张,充注通道的孔喉半径、喉道长度和配位数递减,是气相渗透率与含气饱和度的主要增长阶段;半径为30~50μm的孔喉控制了含气饱和度的增长模式。稳定阶段,气相充注通道扩张至极限,通道的孔喉半径、喉道长度和配位数保持稳定,孔喉网络中形成稳定的不可动束缚水,气相呈集中网簇状、水相呈分散薄膜状分布,含气饱和度和气相渗透率趋于稳定。半径小于20μm的连通孔喉控制了气相充注通道的极限规模,控制了稳定气水分布的形成及最大含气饱和度。连通孔喉非均质性影响了孔喉中气相充注和气水分布的动态...  相似文献   
7.
流体驱动旋转装备在能量转换及能量回收等过程中应用广泛。近年来,流体驱动旋转装备新结构不断涌现,其应用也得到了拓展,逐步与海水淡化、制冷、混合、测速等过程结合。在此发展过程中,计算流体力学为流体驱动旋转装备的设计优化提供了新途径。本文综述了流体驱动旋转装备在能源工程、化学工程等领域的应用,总结了流体驱动旋转装备数值模拟方法研究进展,对比了主动旋转及被动旋转两种模拟方法,指出被动旋转模拟在流体驱动旋转装备研究中的意义,展望了流体驱动旋转技术在超重力装备中的应用前景。  相似文献   
8.
急性下壁心肌梗死是一种病发急、进展快、致死率高的心脏疾病,该文提出一种新颖的基于形态特征提取的BiLSTM神经网络分类的急性下壁心肌梗死辅助诊断算法,可大幅度提高医生对急性下壁心肌梗死疾病的诊断效率并有助于及时确诊.算法包括:对胸痛中心数据库心拍信号进行降噪及心拍分割;根据临床心内科医学诊断指南提取了12导联波形距离特征和分导联波形幅值特征;依据提取的特征搭建LSTM与BiLSTM神经网络进行心拍的分类识别;使用PTB公开数据库和胸痛中心数据库多临床中心进行交叉验证.实验结果表明,加入胸痛中心真实临床数据后,基于形态特征提取BiLSTM神经网络的急性下壁心肌梗死辅助诊断算法准确率达到99.72%,精度达到99.53%,灵敏度达到100.00%,同时F1-Score达到99.76.该算法比其他现有算法准确率提高至少1%,该项研究具有非常重要的临床应用价值.  相似文献   
9.
张杰文  赵旭 《煤炭技术》2022,(1):97-100
为了研究剪切屈服后煤层顶板岩体在开采过程中渗透率的演化规律,进行了不同轴向应变下的围压循环加卸载渗透试验。当达到峰后轴向应力的90%时开始循环加卸载围压,分析剪切屈服后砂岩渗透率随围压、轴向应变的变化规律。结果表明:(1)随着围压、轴向应变的增大,砂岩的渗透率均呈现降低趋势;(2)随循环次数的增多,围压对渗透率的影响越来越小,渗透率恢复率升高;(3)随着轴向应变的增大,砂岩产生的塑性变形越大,由此围压对渗透率的影响减小,渗透率恢复到初始值的能力降低。最终得到剪切屈服后围压和渗透率的理论关系式,为预测巷道开挖过程中的涌水量提供一定的参考。  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号