首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   75篇
  免费   89篇
  国内免费   7篇
电工技术   32篇
综合类   9篇
金属工艺   2篇
机械仪表   5篇
建筑科学   1篇
矿业工程   3篇
能源动力   1篇
水利工程   4篇
石油天然气   2篇
无线电   2篇
一般工业技术   1篇
冶金工业   1篇
自动化技术   108篇
  2024年   1篇
  2023年   26篇
  2022年   45篇
  2021年   37篇
  2020年   31篇
  2019年   17篇
  2018年   10篇
  2017年   1篇
  2013年   1篇
  2005年   1篇
  1986年   1篇
排序方式: 共有171条查询结果,搜索用时 125 毫秒
1.
基于历史数据和深度学习的负荷预测已广泛应用于以电能为中心的综合能源系统中以提高预测精度,然而,当区域中出现新用户时,其历史负荷数据往往极少,此时,深度学习难以适用.针对此,本文提出基于负荷特征提取和迁移学习的预测机制.首先,依据源域用户历史负荷数据,融合聚类算法和门控循环单元网络构建源域数据的特征提取和分类模型;然后,利用该模型提取当前待预测目标域小样本的特征及其类别信息,进而给出基于特征相似度和时间遗忘因子的特征融合策略;最后,依据融合特征,给出基于迁移学习和特征输入的负荷预测.将所提算法应用于卡迪夫某区域的高中和住宅用电预测中,实验结果表明了该算法在综合能源系统小样本电力负荷预测中的有效性.  相似文献   
2.
基于深度残差网络和GRU的SqueezeNet模型的交通路标识别   总被引:1,自引:0,他引:1  
Existing traffic road sign recognition methods are all based on convolutional neural networks. As the number of the model network layers increases, the recognition accuracy will also be improved, but there are still some problems such as the reduction of efficiency and the increase of the number of parameters. Therefore, an improved SqueezeNet model combining deep residual network with GRU neural network (SqueezeNet IR GRU) is proposed. In order to enhance the learning efficiency, ELU function is used as the activation function. To avoid the disappearance of gradients when the network layer is too deep, a deep residual network is introduced to guarantee the stability of the model, GRU neural network that can memorize the important past features is utilized. Experiments were performed on the Cafir 10 and GTSRB datasets, and their recognition accuracy rates are above 99.13% and 88.25%respectively. The experimental results show that the SqueezeNet IR GRU model not only reduces the parameter amount greatly, but also its convergence, stability and recall rate are all much better than others.  相似文献   
3.
精确估计锂离子电池荷电状态(SOC)是电池管理系统的关键技术之一,直接影响着动力锂电池组的使用效率和安全 性。 锂离子电池特性复杂,其 SOC 无法直接测量,且受电流、温度等因素的影响较大。 为此,提出了一种基于门控循环单元 (GRU)神经网络与无迹卡尔曼滤波(UKF)相结合的组合算法。 该方法利用 GRU 网络获得可测量的电流、电压、温度与锂电池 SOC 之间的非线性关系,并以此作为 UKF 的观测方程。 然后,通过 UKF 估计 SOC 值以提高算法的估计精度。 实验结果表明, 在不同温度以及不同的工况下,本文所提方法的均方根误差(RMSE)和平均绝对误差(MAE)分别小于 0. 51%和 0. 46%,均能提 高 SOC 的估计精度。  相似文献   
4.
数值天气预报(NWP)对风电功率超短期预测模型精度有着重要影响。为充分利用NWP信息,考虑多个风电场的空间相关性,提出一种基于多位置NWP和门控循环单元的风电功率超短期预测模型。首先,通过随机森林分析多位置NWP信息对风电场发电功率的重要程度,利用累积贡献率提取NWP中的有效信息,将加权的NWP信息与历史功率数据作为预测模型的输入变量。然后,选取改进的灰狼寻优算法对门控循环单元的参数进行优化,建立多变量时间序列预测模型,进行风电场发电功率的超短期预测。最后,选取中国某风电场的实测数据进行算例分析,验证了所提方法的有效性和可行性。  相似文献   
5.
目的 在脑科学领域,已有研究借助脑功能核磁共振影像数据(functional magnetic resonance imaging,fMRI)探索和区分人类大脑在不同运动任务下的状态,然而传统方法没有充分利用fMRI数据的时序特性。对此,本文提出基于fMRI数据计算的全脑脑区时间信号(time course,TC)的门控循环单元(gated recurrent unit,GRU)方法(TC-GRU)进行运动任务分类。方法 基于HCP(human connectome project)数据集中的100个健康被试者在5种运动任务中分两轮采集的1 000条fMRI数据,对每种运动任务计算每个被试者在各脑区(共360个脑区)的时间信号;使用10折交叉验证方案基于训练集和验证集训练TC-GRU模型,并用构建好的模型对测试集进行测试,考察其对5种运动任务的分类能力,其中TC-GRU在各时刻的输入特征为全脑脑区在对应时刻的TC信号幅值,通过这样的方式提取全脑脑区在整个时间段的时序特征。同时,为了展示使用TC-GRU模型可挖掘fMRI数据中更丰富的信息,设计了多个对比实验进行比较,利用长短期记忆网络(...  相似文献   
6.
对周围环境中运动物体未来状态的准确预测是影响自动驾驶车辆做出准确决策的重要影响因素,车辆是最常见也是最需要关注的运动物体之一。针对结构化道路下周围车辆轨迹预测的多模态输入问题,提出了基于注意力机制的深度预测网络。提出交互模块以提取目标车辆与周围车辆及车道线信息存在的交互特征;结合车道线信息对车辆运动的指引作用,加入目标点预测模块以预测目标车辆可能到达的目标点,增加预测准确性。在Argoverse公开数据集上进行实验,所提轨迹预测网络在3秒预测时长实现了1.45m最小平均距离误差及3.21m最小最终距离误差的预测精度,优于当前主流的预测算法。  相似文献   
7.
海上风电机组齿轮箱运行状态的有效监测和及时预警对海上风机运维工作具有重要意义。为此,提出一种基于门控循环单元(Gated Recurrent Unit, GRU)和注意力机制的海上风电机组齿轮箱状态监测方法。在训练阶段,通过注意力机制自动提取海上风电SCADA数据集输入参量与目标建模参量间的关联关系,同时采用GRU网络提取数据间的时序依赖关系,进而建立风电机组齿轮箱的正常行为模型。在测试阶段,采用指数加权移动平均值(Exponentially Weighted Moving-Average,EWMA)控制图对目标建模参量实际值和模型预测值间的输出残差进行监控,实现海上风机齿轮箱运行状态的实时监测和预警。最后基于东海大桥海上风电场真实数据对所提方法的有效性和优越性进行了验证。结果表明:所提方法对故障和正常运行条件下的海上风电机组齿轮箱状态均可进行有效监测,且相比现有陆上风机状态监测方法具有更高的精度和可解释性,并能更早地揭示故障趋势。  相似文献   
8.
电网的可靠运行及持续发展离不开对短期电力负荷的高效、准确预测。针对表征电网负荷变化的历史数据具有复杂性和时序性等特点,且现有的机器学习预测方法仍存在依据经验选取关键参数的不足,利用卷积神经网络(CNN)提取表征负荷变化的多维特征向量,构造成时间序列输入到门控循环单元(GRU),并使用改进麻雀搜索算法(ISSA)对GRU网络中的超参数进行迭代寻优。预测试验样本来自云南某地区的负荷数据,所提方法的预测精度达到了98.624%,与循环神经网络(RNN)、GRU和长短期记忆(LSTM)等神经网络预测方法进行对比,算例表明,所提方法克服了依据经验选取关键参数难题的同时具有更高的预测精度。  相似文献   
9.
为解决单一传感器信号易受干扰且能提取的退化信息有限,导致轴承剩余寿命预测精度低的问题,提出一种基于双通道信息融合与门控单元(GRU)神经网络的轴承剩余寿命预测方法。进行轴承寿命试验时,在振动传感器采集信号的基础上增加声发射传感器,弥补单一信号易受干扰的缺点;使用卷积神经网络自动挖掘出包含轴承退化信息的特征,避免传统算法过分依赖专家判断的弊端;通过归一化处理对信息进行融合;最后使用这些数据训练GRU神经网络,利用训练好的门控单元神经网络预测高铁牵引电机轴承的剩余寿命。结果表明:相比单通道数据,双通道数据训练出的门控神经网络模型的预测结果更为准确;门控单元神经网络相比长短时记忆神经网络有更高的轴承寿命预测精确度。  相似文献   
10.
目的 图像文本信息在日常生活中无处不在,其在传递信息的同时,也带来了信息泄露问题,而图像文字去除算法很好地解决了这个问题,但存在文字去除不干净以及文字去除后的区域填充结果视觉感受不佳等问题。为此,本文提出了一种基于门循环单元(gate recurrent unit,GRU)的图像文字去除模型,可以高质量和高效地去除图像中的文字。方法 通过由门循环单元组成的笔画级二值掩膜检测模块精确地获得输入图像的笔画级二值掩膜;将得到的笔画级二值掩膜作为辅助信息,输入到基于生成对抗网络的文字去除模块中进行文字的去除和背景颜色的回填,并使用本文提出的文字损失函数和亮度损失函数提升文字去除的效果,以实现对文字高质量去除,同时使用逆残差块代替普通卷积,以实现高效率的文字去除。结果 在1 080组通过人工处理得到的真实数据集和使用文字合成方法合成的1 000组合成数据集上,与其他3种文字去除方法进行了对比实验,实验结果表明,在峰值信噪比和结构相似性等图像质量指标以及视觉效果上,本文方法均取得了更好的性能。结论 本文提出的基于门循环单元的图像文字去除模型,与对比方法相比,不仅能够有效解决图像文字去除不干净以及文字去除后的区域与背景不一致问题,并能有效地减少模型的参数量和计算量,最终整体计算量降低了72.0%。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号