首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31665篇
  免费   1350篇
  国内免费   725篇
电工技术   5630篇
技术理论   1篇
综合类   979篇
化学工业   3305篇
金属工艺   2188篇
机械仪表   2081篇
建筑科学   1354篇
矿业工程   1041篇
能源动力   2544篇
轻工业   1224篇
水利工程   634篇
石油天然气   1022篇
武器工业   159篇
无线电   3765篇
一般工业技术   2533篇
冶金工业   913篇
原子能技术   975篇
自动化技术   3392篇
  2024年   20篇
  2023年   313篇
  2022年   485篇
  2021年   752篇
  2020年   697篇
  2019年   589篇
  2018年   602篇
  2017年   815篇
  2016年   856篇
  2015年   919篇
  2014年   1674篇
  2013年   1639篇
  2012年   1572篇
  2011年   2492篇
  2010年   1709篇
  2009年   1737篇
  2008年   1625篇
  2007年   1723篇
  2006年   1815篇
  2005年   2000篇
  2004年   1687篇
  2003年   1212篇
  2002年   933篇
  2001年   770篇
  2000年   713篇
  1999年   799篇
  1998年   685篇
  1997年   573篇
  1996年   508篇
  1995年   439篇
  1994年   340篇
  1993年   262篇
  1992年   206篇
  1991年   136篇
  1990年   89篇
  1989年   93篇
  1988年   79篇
  1987年   32篇
  1986年   36篇
  1985年   17篇
  1984年   33篇
  1983年   12篇
  1982年   7篇
  1981年   11篇
  1980年   12篇
  1978年   3篇
  1977年   3篇
  1975年   3篇
  1974年   2篇
  1973年   5篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
The fuel cell/battery durability and hybrid system stability are major considerations for the power management of fuel cell hybrid electric bus (FCHEB) operating on complicated driving conditions. In this paper, a real time nonlinear adaptive control (NAC) with stability analyze is formulated for power management of FCHEB. Firstly, the mathematical model of hybrid power system is analyzed, which is established for control-oriented design. Furthermore, the NAC-based strategy with quadratic Lyapunov function is set up to guarantee the stability of closed-loop power system, and the power split between fuel cell and battery is controlled with the durability consideration. Finally, two real-time power management strategies, state machine control (SMC) and fuzzy logic control (FLC), are implemented to evaluate the performance of NAC-based strategy, and the simulation results suggest that the guaranteed stability of NAC-based strategy can efficiently prolong fuel cell/battery lifespan and provide better fuel consumption economy for FCHEB.  相似文献   
2.
为了提升家庭智能用电管理系统的计算效能,使用时序分析算法,将远程抄表实时费控电能表采集的1s步长的电流、电压数据序列,整理成5列录波图,并利用线性重投影算法形成可供神经网络识别的时序序列,使用加权卷积多列神经网络进行挖掘,将用户每1s步长的用电量信息分解成空调、插座、照明等负荷用电量信息,最终形成家庭智能用电管理系统的数据分解展示功能。经过与针对上述负荷单独安装电能表的实测数据进行对比,发现该改进智能用电优化算法得到的用电量分解结果,与实测结果的误差率均为5.8~6.0%之间。  相似文献   
3.
针对孔径(100~200)μm高深宽比微细孔电解加工中,电极侧壁绝缘层在电解液冲击和气泡撕裂中易损伤/脱落等问题,提出一种基于丙烯酸环氧树脂双极性电泳法的微细中空电极侧壁绝缘制备工艺。通过工艺参数优化后,利用所制备的侧壁绝缘电极,开展加工对比实验,结果表明双极性电泳法所制备的侧壁绝缘层,具有较高的致密性、均匀性、耐久性和一致性,其性能符合微细电解加工对电极侧壁绝缘层的特殊要求。最后,在500μm厚304钢片上加工出入口约168.4μm、出口约165.8μm、锥度约为0.15°的高深宽比微细孔,其锥度降低了约60%以上,基本为直孔,可满足实际需求,进而验证了本方法的应用可行性。  相似文献   
4.
Hydrogen produced from renewable resources is one of the cleanest fuels and could be used to store intermittent solar, wind and other energies. The main concern about using hydrogen is its hazards, such as high storage pressure, wide-range flammability, low mass density, and high diffusion. This study investigated the hazards of compressed hydrogen storage by developing a CFD model to understand the gas dispersion behaviour. The model was validated using the past experimental data and showed a good agreement, which could demonstrate the diffusion characteristics and gas stratification of a buoyant gas. A case study of an accidental release of compressed hydrogen from a storage tank was investigated to evaluate the risk of a hydrogen plant. A mathematical model of the jet spill was used to account for the choking effect from a high-pressure release to ensure the input velocity in CFD simulation is suitable for modelling gas dispersion using verified spatial and temporal scales, then the simulation results were used as inputs of vapour cloud explosions (VCEs) to investigate the potential overpressure effect. It was found the CFD model could predict a more reasonable flammable gas amount in cloud than using the bulk hydrogen release rate. The safety distance based on the overpressure prediction was reduced by 35%. The method proposed in this study can provide more validity for the consequence analysis as part of risk assessment.  相似文献   
5.
《Ceramics International》2022,48(2):1889-1897
SiC fiber reinforced ceramic matrix composites (SiCf-CMCs) are considered to be one of the most promising materials in the electromagnetic (EM) stealth of aero-engines, which is expected to achieve strong absorption and broad-band performance. Multiscale structural design was applied to SiCf/Si3N4–SiOC composites by construction of micro/nanoscale heterogeneous interfaces and macro double-layer impedance matching structure. SiCf/Si3N4–SiOC composites were fabricated by using SiC fibers with different conductivities and SiOC–Si3N4 matrices with gradient impedance structures to improve impedance matching effectively. Owing to its unique structure, SiCf/Si3N4–SiOC composites (A3-composites) achieved excellent EM wave absorption performance with a minimum reflection coefficient (RCmin) of ?25.1 dB at 2.45 mm and an effective absorption bandwidth (EAB) of 4.0 GHz at 2.85 mm in X-band. Moreover, double-layer SiCf/Si3N4–SiOC with an improved impedance matching structure obtained an RCmin of ?56.9 dB and an EAB of 4.2 GHz at 3.00 mm, which means it can absorb more than 90% of the EM waves in the whole X-band. The RC is less than ?8 dB at 2.6–2.8 mm from RT to 600 °C in the whole X-band, displaying excellent high-temperature absorption performance. The results provide a new design opinion for broad-band EM absorbing SiCf-CMCs at high temperatures.  相似文献   
6.
The influences of the SiC infiltration and coating on the compressive mechanical behaviours of 2D C/SiC composites were determined up to 1600 °C at 0.001 and 1000/s strain rates in argon and air. In addition, the failure mechanisms responsible for the compressive mechanical behaviours were elucidated through in-situ observation and micro-analysis-based methods. The 2D C/SiC composite compressive strength was highly sensitive to temperature, loading rate, and oxidation, and was enhanced by the change in the thermal residual stress and decreased by oxidation. In argon, because of the extra infiltrated SiC matrix, SiC treated 2D C/SiC specimens exhibited higher compressive strengths and lower strain rate sensitivity factors than SiC untreated 2D C/SiC specimens. The SiC coating effectively improved the oxidation resistance of the 2D C/SiC composites in air, regardless of the temperature, strain rate, and oxidative damage-which depends on SiC coating, strain rate, and temperature.  相似文献   
7.
Customizing catalysts from the electronic structure, such as spin state, is an effective but challenging strategy for oxygen evolution reaction (OER). Herein, an ultrafine Co–Fe material highly dispersed on nitrogen carbide matrix is fabricated by coordination polymer and self-templating method to scrutinize the impact of spin state of Co on OER through Fe doping. The optimized catalyst shows boosted OER performance, which only requires overpotential of 333 mV at 10 mA cm?2, outperforming other control samples and commercial RuO2. The elevated local spin states of Co by Fe doping lead to charge transfer acceleration and fast generation of oxygenated intermediates, which is proved to account for the OER elevation. In addition, the long-term stability of Co–Fe material is guaranteed by the strong coordination of Co/Fe to the melamine-formaldehyde resin, which is used to adsorb metal ions, contributing to the high dispersion of active sites during the OER process.  相似文献   
8.
A novel image sequence-based risk behavior detection method to achieve high-precision risk behavior detection for power maintenance personnel is proposed in this paper. In this method, the original image sequence data is first separated from the foreground and background. Then, the free anchor frame detection method is used in the foreground image to detect the personnel and correct their direction. Finally, human posture nodes are extracted from each frame of the image sequence, which are then used to identify the abnormal behavior of the human. Simulation experiment results demonstrate that the proposed algorithm has significant advantages in terms of the accuracy of human posture node detection and risk behavior identification.  相似文献   
9.
High-quality p-type semiconducting Co3O4 with mixed morphology of nanoparticles/nanorods are synthesized using a hydrothermal route for high response and selective hydrogen sulphide (H2S) sensor application. XRD and Raman studies revealed the crystal structure and molecular bonding for obtained Co3O4, respectively. The nanoparticles/nanorods-like structures were confirmed for Co3O4 using FESEM and TEM analysis. The EDS and XPS spectra analysis were carried out for elemental composition and chemical atomic states of Co3O4. The Co3O4 sensor is investigated for gas sensing properties in dynamic conditions. The sensor exhibited the highest selectivity towards H2S among various hydrogen-contained gases at 225 °C. The sensor revealed a high response of 357% and 44% for 100 and 10 ppm H2S gas concentrations, respectively. The Co3O4 sensor exhibited a systematic dynamic resistance response for 100–10 ppm range H2S gas. The excellent dynamic resistance repeatability of the sensor was shown towards 25 ppm H2S gas. The response of Co3O4 sensor was investigated at different operating temperatures and H2S concentrations. The sensor stability and H2S sensing mechanism for the Co3O4 sensor have been reported. Highly uniform and mixed nanostructures of Co3O4 can be the potential sensor material for real-time high-performance H2S sensor application.  相似文献   
10.
Water electrolysis technologies aim to provide a significant increase in green hydrogen production efficiency. In this work, a framework was developed to explore the use of supercritical water for alkaline electrolysis. This framework was used to perform Arrhenius analysis as a function of potential, and to explore activation energies for sub- and supercritical water electrolysis. An analysis of the conductivity of solution unveiled a discontinuity in the trends between sub- and supercritical potassium hydroxide solution conductivity. Unlike prior work on supercritical water electrolysis, this work investigates trends in electrochemical parameters, the sources of these trends, and how they change between the sub- and supercritical regimes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号