首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4387篇
  免费   421篇
  国内免费   352篇
电工技术   270篇
综合类   406篇
化学工业   911篇
金属工艺   277篇
机械仪表   195篇
建筑科学   221篇
矿业工程   45篇
能源动力   147篇
轻工业   271篇
水利工程   69篇
石油天然气   108篇
武器工业   48篇
无线电   411篇
一般工业技术   865篇
冶金工业   102篇
原子能技术   38篇
自动化技术   776篇
  2024年   14篇
  2023年   67篇
  2022年   89篇
  2021年   107篇
  2020年   125篇
  2019年   153篇
  2018年   131篇
  2017年   176篇
  2016年   171篇
  2015年   175篇
  2014年   196篇
  2013年   345篇
  2012年   257篇
  2011年   263篇
  2010年   183篇
  2009年   259篇
  2008年   261篇
  2007年   289篇
  2006年   234篇
  2005年   189篇
  2004年   196篇
  2003年   162篇
  2002年   163篇
  2001年   100篇
  2000年   118篇
  1999年   86篇
  1998年   78篇
  1997年   83篇
  1996年   64篇
  1995年   53篇
  1994年   52篇
  1993年   39篇
  1992年   35篇
  1991年   35篇
  1990年   24篇
  1989年   43篇
  1988年   28篇
  1987年   10篇
  1986年   12篇
  1985年   28篇
  1984年   22篇
  1983年   20篇
  1982年   20篇
  1980年   1篇
  1979年   1篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
排序方式: 共有5160条查询结果,搜索用时 265 毫秒
1.
The Ag-Pd internal electrode of multilayer piezoelectric ceramics needs to be sintered below 1000°C, and lead wires and components need to be welded with lead-free solder at 260°C. PNN–PMW–PZT–xSr piezoelectric ceramics with high Curie temperature (Tc > 260°C) were synthesized at a low sintering temperature (960°C) to meet the requirements of multilayer piezoelectric devices. The relationship between structures (phase, domain, and microstructures) and electrical properties (piezo/ferroelectric properties, and dielectric relaxation) in the Sr2+ substituted ceramics was investigated. Rietveld refinement and Raman spectra show that Sr2+ substitution can cause the phase change and increase the force constant of [BO6] octahedron. The piezoelectric response increases with increasing the content of the tetragonal phase (CTP) in the rhombohedral-tetragonal (R-T) coexisted ceramics. The ceramics with 0.6 mol% Sr2+ substitution have minimum activation energy for domain wall movement (Ea) of 0.0362 eV which favors the formation of nanometer-sized domains, and possess excellent electrical properties (d33 = 623 pC/N, d33* =783 pm/V, Tc =295°C). The higher the CTP, the lower the Ea. The lower Ea favors the rotation of polarization direction and extension, and is beneficial to the generation of the nanometer-size domains, resulting in high piezoelectric properties.  相似文献   
2.
The morphotropic composition of the lead-free solid solution between Na0.5Bi0.5TiO3 and BaTiO3 (0.94 Na0.5Bi0.5TiO3-0.06 BaTiO3 or NBT-6BT) is of particular interest for the next generation of high-temperature capacitors but remains plagued by the diversity of dielectric properties reported in the literature. In order to explain the apparent inconsistencies among the reported dielectric properties of NBT-6BT, we examine the influence of stoichiometry, phase separation, and metallization method. We show that the nominal stoichiometry has a crucial effect, since increasing the nominal Na/Bi ratio increases conductivity and dielectric losses (tan δ). It also increases the real part of the permittivity (ε’) and the frequency dispersion of both ε’ and tan δ, thereby altering the shape of the evolution with temperature of the dielectric properties. Moreover it increases the depolarization temperature (Td) and decreases the temperature of maximum permittivity (Tm). Phase separation also occurs during the synthesis of NBT-6BT as Na evaporation leads to the formation of secondary Ba-containing phases. We report that these phases can have a positive impact on the dielectric properties: a moderate volume fraction (2.5 to 3.0%) and average grain surface (0.9 to 3.0 µm2) of these secondary Ba-containing phases increase the relative permittivity, decrease the dielectric losses, and increase the insulation resistance. We also show that the metallization method impacts the dielectric properties and therefore may contribute to the differences between various reports. The dielectric properties of NBT-6BT samples are measured during successive heating/cooling cycles and reveal that the permittivity value is lower during the first heating when silver paste, even cured, is used. These three components contribute to explaining the diversity of the reported dielectric properties of NBT-6BT.  相似文献   
3.
LiCuNb3O9 has been reported newly a colossal permittivity (CP) perovskite, in which the B-site NbO6 octahedra play a bridging role in the polaron hopping. However, how the A-site modification affects the origin of the polarons and further the CP behaviours remains unexplored. To this end, A-site Ca2+ was incorporated to form Li1-xCaxCuNb3O9, and the local states, dielectric relaxations and conduction behaviours were comprehensively studied. The substitution induces the polyvalent Cu cations, i.e. Cu+/Cu2+/Cu3+. Bond valence sum calculations imply that Cu2+ and Cu3+ are underbonded, and Cu+ is overbonded, while B-site Nb5+ shows slightly different with theoretical pentavalence. All the compositions exhibit a similarly room-temperature CP response, but present two dielectric relaxations, i.e. TR1:170–300 K and TR2:260–400 K. Comprehensive investigations on universal dielectric response and bulk dc conductivity indicate that the TR1 follows the variable-range-hopping where the electron hopping between the mixed Cu+/Cu2+, while TR2 contributes from the Cu3+ nearest neighbor hopping.  相似文献   
4.
Sr-modified Cu/Nb co-doped BaTiO3 ceramics were prepared using solid-state reactions and the structures and dielectric properties were studied. All the samples had single-phase perovskite structures with no detectable secondary phases. In the low-temperature range, the dielectric constant decreased as the Sr content increased in the high- and low-frequency ranges. Two dielectric constant plateaus accompanied by dielectric relaxation peaks were present in the loss curves, and the relaxation process deviated from the Arrhenius law at low temperatures. The dielectric constants of different plateaus were related to inhomogeneous structures such as grain interiors and grain boundaries. The polarization strength of the grain boundaries in the low-frequency range increased with the temperature and that of the grain interiors demonstrated paraelectric behaviour in high-temperature ranges. An analysis of the electric modulus spectra indicated a close relationship between the relaxation process and resistivity of the grains for high-frequency relaxation. The impedance spectra at high temperatures consist of three electrical responses, corresponding to the effects of grains, grain boundaries, and electrodes. The dielectric relaxation appeared in high temperature range was related to the electrical properties of the grain boundaries.  相似文献   
5.
The photoluminescence, dielectric relaxation, ferroelectric hysteresis, and field-induced strain properties of Pr3+-doped 0.24Pb(In1/2Nb1/2)O3-0.42Pb(Mg1/3Nb2/3)O3-0.34PbTiO3 (PIN-PMN-PT:Pr3+) multifunctional ceramics have been investigated. It was found that Pr3+ doping enhanced the dielectric diffuseness and relaxation behavior of PIN-PMN-PT ceramics. Slim P-E loops and S-E curves appear in PIN-PMN-PT:Pr3+ ceramics when the Pr3+ doping concentration reaches 1.4 mol%. Local domain configurations associated with phase transitions were investigated by piezoresponse force microscopy (PFM). Large electrostrictive coefficient Q33 (?0.03 m4/C2) and high energy-storage efficiency η (92%) were obtained in 2 mol% Pr3+-doped PIN-PMN-PT ceramic in the ergodic relaxor (ER) phase at room temperature. The giant electrostrictive effect and excellent energy-storage performance are related to the field-induced dynamic behavior of polar nanoregions (PNRs). The results show that the PIN-PMN-PT:Pr3+ system is an excellent multifunctional material for making electromechanical and energy storage devices.  相似文献   
6.
This research addresses the residual stresses phenomenon taking place during the manufacture of porcelain tiles. Residual stresses were quantified by the strain relaxation slotting method. The method is based on the fact that stresses are released when a slot is made leading to a curvature change.Once the method was validated, the impact of process variables such as starting body composition, temperature and cooling rate of firing cycle was investigated. Findings showed that cooling rate was the most influencing variable whereas Young’s modulus of fired specimens also play a significant role. Symmetry of the parabolic residual stress profile denoted homogenous cooling on upper and lower tile surfaces during the cooling step. In addition, it was observed that polishing of a stressed tile gives rise to a decreasing of deformation as a consequence of stress release by mechanical grinding.  相似文献   
7.
A transient three-dimensional (3D) model was established to understand the bubble motion in an industrial electrolytic process. An anode with a new design was tested. It incorporates two slots that allow an efficient removal of gas bubbles. The electromagnetic fields were described by solving Maxwell's equations. The bubble movement was studied with two-way coupling Euler–Lagrange approach. The interplay of current density and bubble nucleation rate was included. The collision and coalescence of bubbles were considered. Random walk module was invoked for involving the chaotic effect of the turbulence. The numerical results were validated by experimental measurements. The results indicate that the current distribution and the bubble nucleation periodically change. Due to the slot, the bubble elimination heavily increases. The contribution of the slot to the bubble removal exceeds 50% in the case of three currents, and the promotion of the slot decays with increasing the current.  相似文献   
8.
The electrical properties of cubic, calcia-stabilised zirconia ceramics, CaxZr1-xO2-x: 0.12 ≤ x ≤ 0.18 have been investigated using impedance spectroscopy to separate bulk, grain boundary and electrode contact impedances. The most appropriate equivalent circuit to characterise the bulk response required inclusion of a dielectric component, represented by a series RC element, in parallel with the oxide ion conductivity represented by a parallel combination of a resistance, capacitance and constant phase element. The dielectric component may be attributed to defect complexes involving immobile oxygen vacancy pairs whereas long range conduction involves single oxygen vacancies.  相似文献   
9.
The three GxxxG repeating motifs from the C-terminal region of β-amyloid (Aβ) peptide play a significant role in regulating the aggregation kinetics of the peptide. Mutation of these glycine residues to leucine greatly accelerates the fibrillation process but generates a varied toxicity profile. Using an array of biophysical techniques, we demonstrated the uniqueness of the composite glycine residues in these structural repeats. We used solvent relaxation NMR spectroscopy to investigate the role played by the surrounding water molecules in determining the corresponding aggregation pathway. Notably, the conformational changes induced by Gly33 and Gly37 mutations result in significantly decreased toxicity in a neuronal cell line. Our results indicate that G33xxxG37 is the primary motif responsible for Aβ neurotoxicity, hence providing a direct structure–function correlation. Targeting this motif, therefore, can be a promising strategy to prevent neuronal cell death associated with Alzheimer's and other related diseases, such as type II diabetes and Parkinson's.  相似文献   
10.
This article investigates the Hall and ion‐slip impacts on the mixed convection flow of a Maxwell nanofluid over an expanding surface in a permeable medium. The impacts of Brownian movement and thermophoresis parameters, Soret, Dufour, viscous dissipation, chemical reaction, and suction parameters, are, moreover, considered. Using the similitude changes, the partial differential equations with regard to the momentum, energy, and concentration equations are transformed to an arrangement of nonlinear ordinary differential equations, which are handled numerically utilizing a spectral relaxation method (SRM). The impacts of noteworthy physical parameters on the velocities, thermal, and concentration distributions are investigated graphically. Moreover, the numerical values of skin‐friction coefficients, local Nusselt number, and Sherwood number for different values of the mixed convection parameter ( γ ) , Deborah number ( λ ) , Hall parameter ( β H ) , ion‐slip parameter ( β i ) , Dufour number (Du), and Soret number ( Sr ) are computed and tabulated. It is discovered that ascent in Deborah number reduces both the stream and transverse velocity profiles, while the inverse pattern is seen with augmentation in the mixed convection parameter. In addition, inverse patterns of the stream and transverse velocity profiles are seen with expansion in magnetic, Hall, and ion‐slip parameters. Besides this, the temperature and concentration disseminations decline with augmentation in Dufour number and chemical reaction parameters, respectively. It is likewise seen that both the skin‐friction coefficients lessen with expansion in Deborah number, and they ascend with upgrade in blended convection and ion‐slip parameters, while the opposite condition is noticed with augmentation in Hall parameter. Furthermore, the reverse trends of local Nusselt and Sherwood numbers are discovered with expansion in the Dufour and Soret numbers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号