首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32685篇
  免费   4116篇
  国内免费   1887篇
电工技术   16255篇
综合类   1902篇
化学工业   1983篇
金属工艺   1077篇
机械仪表   1295篇
建筑科学   979篇
矿业工程   911篇
能源动力   1577篇
轻工业   540篇
水利工程   432篇
石油天然气   938篇
武器工业   126篇
无线电   5389篇
一般工业技术   1784篇
冶金工业   798篇
原子能技术   554篇
自动化技术   2148篇
  2024年   51篇
  2023年   438篇
  2022年   729篇
  2021年   971篇
  2020年   1071篇
  2019年   864篇
  2018年   849篇
  2017年   1269篇
  2016年   1310篇
  2015年   1582篇
  2014年   2241篇
  2013年   1990篇
  2012年   2663篇
  2011年   2973篇
  2010年   2047篇
  2009年   2117篇
  2008年   2056篇
  2007年   2223篇
  2006年   2094篇
  2005年   1602篇
  2004年   1266篇
  2003年   1141篇
  2002年   901篇
  2001年   837篇
  2000年   680篇
  1999年   545篇
  1998年   421篇
  1997年   315篇
  1996年   312篇
  1995年   245篇
  1994年   237篇
  1993年   159篇
  1992年   148篇
  1991年   79篇
  1990年   66篇
  1989年   50篇
  1988年   38篇
  1987年   26篇
  1986年   26篇
  1985年   12篇
  1984年   13篇
  1983年   11篇
  1982年   8篇
  1981年   7篇
  1979年   1篇
  1978年   2篇
  1975年   2篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
《Ceramics International》2021,47(19):27479-27486
Threshold switching (TS) devices have evolved as one of the most promising elements in memory circuit due to their important significance in suppressing crosstalk current in the crisscross array structure. However, the issue of high threshold voltage (Vth) and low stability still restricts their potential applications. Herein, the vanadium oxide (VOx) films deposited by the pulsed laser deposition (PLD) method are adopted as the switching layer to construct the TS devices. The TS devices with Pt/VOx/Pt/PI structure exhibit non-polar, electroforming-free, and volatile TS characteristics with an ultralow Vth (+0.48 V/−0.48 V). Besides that, the TS devices also demonstrates high stability, without obviously performance degradations after 350 cycles of endurance measurements. Additionally, the transition mechanism is mainly attributed to the synergistic effect of metal-insulator transition of VO2 and oxygen vacancies. Furthermore, the nonvolatile bipolar resistance switching behaviors can be obtained by changing oxygen pressure during the deposition process for switching films. This work demonstrates that vanadium oxide film is a good candidate as switching layer for applications in the TS devices and opens an avenue for future electronics.  相似文献   
2.
A low pressure impactor is used to measure triboelectric charging behavior of metallic nanoparticles. Ag nanoparticles, produced by spark discharge, were impacted onto Pt sputtered targets. The influence of the impaction angle and impaction velocity on the triboelectric charging was investigated. While for perpendicular impaction the charge transfer behavior of previous work was confirmed, the oblique impaction revealed new phenomena. Additional charge transfer was observable, which increases with obliqueness. The possibility of mass transfer between particle and target due to the high-energy collisions was also investigated. SEM characterization and Auger spectroscopy indicate mass transfer from the particle to the target surface.  相似文献   
3.
Lithium metal anodes (LMAs) are promising for next-generation batteries but have poor compatibility with the widely used carbonate-based electrolytes, which is a major reason for their severe dendrite growth and low Coulombic efficiency (CE). A nitrate additive to the electrolyte is an effective solution, but its low solubility in carbonates is a problem that can be solved using a crown ether, as reported. A rubidium nitrate additive coordinated with 18-crown-6 crown ether stabilizes the LMA in a carbonate electrolyte. The coordination promotes the dissolution of NO3 ions and helps form a dense solid electrolyte interface that is Li3N-rich which guides uniform Li deposition. In addition, the Rb (18-crown-6)+ complexes are adsorbed on the dendrite tips, shielding them from Li deposition on the dendrite tips. A high CE of 97.1% is achieved with a capacity of 1 mAh cm−2 in a half cell, much higher than when using the additive-free electrolyte (92.2%). Such an additive is very compatible with a nickel-rich ternary cathode at a high voltage, and the assembled full battery with a cathode material loading up to 10 mg cm−2 shows an average CE of 99.8% over 200 cycles, indicating a potential for practical use.  相似文献   
4.
本文采用超星学习通线上教学平台,以 “高电压技术”课程为对象,实施了规模为120余人的线上线下混合式教学。基于线上教学和传统教学的优势互补,设计了“高电压技术”多个教学环节。归纳分析了混合式教学在各个教学环节取得的效果和问题,并根据学生反馈提出了持续性的改进措施。  相似文献   
5.
《Ceramics International》2021,47(24):34521-34528
Aiming at the problem that power density and energy density are difficult to obtain simultaneously under low field, a novel composition (1-x)Na0·5Bi0·5TiO3-xBaZn1/3Ta2/3O3((1-x)NBT-xBZT) was designed and fabricated via solid-state methods. With the addition of BZT, the crystal lattice, structural symmetry, grain size, and dense degree were all increased proved by XRD, Raman, and Archimedes drainage method et al. Because of the enhancement of relaxor behavior, the x=0.10 sample displayed a high permittivity εr of 2871±15% and a low dielectric loss tan δ ≤ 0.025 in the wide temperature range of 60–400 oC. This ceramic also showed maximum recoverable energy density Wd (2.07 J/cm3) with high efficiency η (71.5%) under a low field of 150 kV/cm. Moreover, pulse discharge testing proved that this ceramic possessed both a significant discharge energy density WD (0.96 J/cm3) and a record high power density PD (108.54 MW/cm3). This work provided a promising material for high power and energy applications.  相似文献   
6.
Membrane electrode assembly (MEA) is considered a key component of a proton exchange membrane fuel cell (PEMFC). However, developing a new MEA to meet desired properties, such as operation under low-humidity conditions without a humidifier, is a time- and cost-consuming process. This study employs a machine-learning-based approach using K-nearest neighbor (KNN) and neural networks (NN) in the MEA development process by identifying a suitable catalyst layer (CL) recipe in MEA. Minimum redundancy maximum relevance and principal component analysis were implemented to specify the most important predictor and reduce the data dimension. The number of predictors was found to play an essential role in the accuracy of the KNN and NN models although the predictors have self-correlations. The KNN model with a K of 7 was found to minimize the model loss with a loss of 11.9%. The NN model constructed by three corresponding hidden layers with nine, eight, and nine nodes can achieve the lowest error of 0.1293 for the Pt catalyst and 0.031 for PVA as a good additive blending in the CL of the MEA. However, even if the error is low, the prediction of PVA seems to be inaccurate, regardless of the model structure. Therefore, the KNN model is more appropriate for CL recipe prediction.  相似文献   
7.
The increased use of fossil fuels in the transportation sector has led to an exponential rise of carbon dioxide in the atmosphere. The carbon dioxide (CO2) is the major cause of global warming resulting in climate change and extreme weather conditions. This study explores the ways of reducing the CO2 emission from the exhaust of a common rail engine. The reduction in CO2 emissions were achieved by a combination of methods. It includes the use of low carbon biofuels (cedarwood oil (CWO), and wintergreen oil (WGO)), induction of zero-carbon, hydrogen in the intake manifold and a zeolite-based after-treatment system. In diesel, CWO and WGO were blended 20% by volume and experiments were conducted at different load conditions. The results shows that 20% blending of winter green oil resulted in maximum CO2 reduction of 20% as compared to diesel. The emission was further reduced with the induction of hydrogen along with the after-treatment system. It is seen that a maximum of 54% reduction in CO2 emission could be achieved with the combination for WGO in comparison to diesel without much affecting the other emissions and performance parameters.  相似文献   
8.
The utilization of biological-, electrode- and conductive material-mediated direct interspecies electron transfer (DIET) between exoelectrogenic bacteria and methanogenic archaea for enhancing methane productivity is widely reported in the literature. However, two cardinal questions are still controversial, i.e., which applied voltage value would be more recommended to enhance methane generation? and how the DIET over IIET has the upper hand in enhancing methane productivity? Herein, the influence of different applied voltages to promote biological-, conductive- and electrode-mediated DIET was investigated in MEC-AD reactors with conductive material. Polarized bioelectrodes induced electrode-mediated DIET (eDIET) and biological DIET (bDIET), in addition to cDIET (conductive material-mediated DIET), improved the methane yield to 315.40 mL/g CODr with an applied voltage of 0.9 V. Whereas further increase of applied voltage 1.2 V, lessened methane production efficiency due to high-voltage inhibition and adverse effect on DIET promotion. The anaerobic digestion coupled microbial electrolysis cells with optimal electric potential selectively promotes the DIET through polarized electrodes were confirmed through microbial analysis. As the contribution of DIET increased to 80%, the methane yield increased, and the substrate residue decreased, resulting in a significant improvement in methane production.  相似文献   
9.
The hydrogel electrolyte is an important part of safety and development potential in zinc-based energy storage equipment due to its inherent low mechanical strength and voltage decomposition. However, hydrogel electrolytes possess a reduced working life for zinc dendrites growth and a narrow voltage window. In this study, a hydrogel electrolyte prepares by the zwitterionic monomer [2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl) (MS) and sodium alginate (SA) alleviate these problems. The zwitterionic double-network hydrogel has good mechanical strength, inhibits the growth of zinc dendrites, enhances practicability, greatly increases the voltage window (0–2.4 V), and has self-healing properties to its rich functional groups. The assembled zinc-ion hybrid supercapacitors (ZHSs) have a high-power density of 172.33 W kg?1 and an energy density of 88.56 Wh·kg?1 at 0.5 A g?1. The assembled zinc-ion battery also has good electrochemical performance. Flexible ZHSs and batteries provide power to the timer stably under different bending angles. The zwitterionic double-network hydrogel can be applied to both zinc-based supercapacitors and batteries.  相似文献   
10.
《Ceramics International》2022,48(22):33115-33121
As a critical topological phase transition material, SrFeOx could play an essential role in the field of resistive memory. How to implement resistance-switching more softly and ensure the stability of materials has always been a relevant research hotspot. Regulating the oxygen environment during the deposition process of the films can effectively control the stoichiometry of the functional layer and then improve the resistance-switching characteristics of the device. In this paper, a SrFeOx hetero-film was prepared by oxygen pretreatment on the SrRuO3 surface before SrFeOx deposition, and the as-assembled micrometer-scale device exhibits a low set operating voltage of 0.6 V and favorable cycling characteristics. The SrFeOx hetero-film reveals a vertical brownmillerite superlattice-like structure with ~20 nm perovskite buffer layer, which benefits the connection and rupture of conductive filament. Additionally, XPS and UV–vis were used to analyze the bonding energy and band gap of SrFeOx hetero-film, and offers the experimental basis for the explanation of the conductive mechanism. Therefore, the device based on SrFeOx hetero-film with low operation voltage provides a reference for low power consumption research on topological phase transition material.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号