首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1234篇
  免费   61篇
  国内免费   33篇
电工技术   116篇
综合类   77篇
化学工业   178篇
金属工艺   20篇
机械仪表   120篇
建筑科学   14篇
矿业工程   24篇
能源动力   4篇
轻工业   19篇
水利工程   3篇
石油天然气   6篇
武器工业   8篇
无线电   390篇
一般工业技术   62篇
冶金工业   2篇
原子能技术   22篇
自动化技术   263篇
  2024年   1篇
  2023年   43篇
  2022年   19篇
  2021年   28篇
  2020年   38篇
  2019年   31篇
  2018年   21篇
  2017年   40篇
  2016年   15篇
  2015年   14篇
  2014年   35篇
  2013年   36篇
  2012年   48篇
  2011年   74篇
  2010年   87篇
  2009年   105篇
  2008年   101篇
  2007年   99篇
  2006年   107篇
  2005年   83篇
  2004年   59篇
  2003年   83篇
  2002年   80篇
  2001年   40篇
  2000年   20篇
  1999年   11篇
  1998年   1篇
  1997年   4篇
  1996年   4篇
  1993年   1篇
排序方式: 共有1328条查询结果,搜索用时 156 毫秒
1.
The strengthening method of multi-element M-site solid solution is a common approach to improve mechanical properties of MAX phase ceramic. However, the research on capability of multi-element A-site solid solution to improve mechanical properties has rarely been reported. Thereupon, quasi-high-entropy MAX phase ceramic bulks of Ti2(Al1?xAx)C and Ti3(Al1?xAx)C2 (A = Ga, In, Sn, x = 0.2, 0.3, 0.4) were successfully synthesized by in situ vacuum hot pressing via multi-elements solid solution. The multi-elements solid solution in single-atom thick A layer was confirmed by X-ray diffraction and X-ray photoelectron spectroscopy as well as by energy dispersive X-ray spectroscopy mappings. Effects of doped multi-elements contents on the phase, microstructure, mechanical properties, and high temperature tribological behaviors were studied. Results demonstrated that the Vickers hardness, anisotropic flexural strength, fracture toughness, and tribological properties of Ti–Al–C based MAX ceramics could be remarkably improved by constitution of quasi-high-entropy MAX phase in A layers. Moreover, the strengthening and wear mechanisms were also discussed in detail. This method of multi-element solid solution at A-site provides new way to enhance mechanical properties of other MAX phase ceramics.  相似文献   
2.
《Ceramics International》2020,46(1):576-583
Ti3SiC2 has the unique properties integrating the advantages of metals and ceramics, and good open pore structure when alloyed with Al. In this work, porous Ti3SiC2 compounds with different Al/Si atom ratios were prepared through the reactive synthesis of elemental powders at 1300 °C. The results indicate that the phase compositions are determined by Al element mole number, and that the pore structure can be controlled through varying Ti particle size. The MAX phase transits from Ti3SiC2 with Al element mole number no more than 0.6 to Ti3AlC2 with Al element mole number in the range of 0.8–1.2. When Al element mole number is 0.6, the porous compound has a single MAX phase of Ti3SiC2 with uniform microporous structure and high bending strength. Porous Ti3SiC2 alloyed with 0.6Al has a slow linear increase rate of 0.0083%/μm in open porosity with increasing Ti particle size, and a strict linear relationship between the maximum aperture and Ti particle size with the increase rate of 0.0342 μm/μm. The pore structure formed by the phase transition mechanism for porous MAX phase has the smallest tortuosity factor compared with that formed by the clearance mechanism and the Kirkendall effect.  相似文献   
3.
《Ceramics International》2020,46(8):11846-11853
Cr2AlC and its composites containing α-Al2O3 (6.1 and 15.2 wt %) were prepared by hot pressing and their corrosion behaviors in air-saturated 3.5 wt % NaCl aqueous solution were investigated by electrochemical testing methods. It was revealed that the secondary phase of Al2O3 particles mainly distributed along grain boundaries of Cr2AlC matrix. The potentiodynamic polarization measurements showed that the corrosion current densities of these Cr2AlC composites were lower than that of the pure Cr2AlC. The Aluminum in Cr2AlC was prone to be attacked more easily. When immersed at open circuit potential (OCP), Al readily slipped out from Cr2AlC matrix into NaCl solution in the form of dissoluble species. But in the case of polarization, regardless of potentiostatic polarization or potentiodynamic polarization, more de-intercalated Al, reacted with the electrolyte to form corrosion products of Al2O3 and/or AlOOH and deposited on the sample surface. For Cr2AlC/α-Al2O3 composites, the presence of Al2O3 weakened the corrosion along grain boundaries by partly blocking the permeation of electrolyte and inhibiting the anodic dissolution process.  相似文献   
4.
《Ceramics International》2020,46(2):1722-1729
The room temperature abrasive wear behavior of three selected MAX phases, Ti3SiC2, solution strengthened Ti2.7Zr0.3SiC2 and Cr2AlC, is investigated by low velocity scratch testing using a diamond conical indentor with a final radius of 100 μm and a cone angle of 120° and applied loads of up to 20 N. All three materials showed a relatively low wear resistance in comparison to most engineering ceramics such as Al2O3, Si3N4 and SiC. For all three materials, the wear rate scaled more or less linearly with the applied load. The softer Ti3SiC2 with a hardness of 2.8 GPa showed the lowest wear resistance with extensive ploughing and grain breakout damage, both within and outside the direct wear track, in particular at the highest load. The hardest material, Ti2.7Zr0.3SiC2, with a hardness of 7.3 GPa, showed a 5 times better wear resistance. The Cr2AlC with a hardness of 4.8 GPa showed a wear resistance equal to or even better than that of the Ti2.7Zr0.3SiC2. The wear mechanism depends on the applied load and the microstructure of the MAX phase materials tested. For the Ti3SiC2 sample, a quasi-plastic deformation behavior occurs below a point load of 10 N, resulting in grain bending, kink band formation and delamination, grain de-cohesion, as well as trans-and intra-granular fracture near the scratch groove. At this load, the Ti2.7Zr0.3SiC2 and Cr2AlC MAX samples display plastic ploughing, grain boundary cracks and material dislodgments.  相似文献   
5.
In this work, oxidation mechanisms were studied in fine-grained (FG) and coarse-grained (CG) Ti2AlC bulk samples. Results showed that the oxidation kinetics are controlled by the grain size of Ti2AlC. Bigger are the grains, faster is the oxidation. A dense and protective Al2O3 layer forms at the surface of FG-Ti2AlC samples while for the CG-Ti2AlC samples, a thick TiO2 layer forms on top of a discontinuous Al2O3. CG-Ti2AlC was observed to simultaneously transform into Ti3AlC2 and TiC instead of being directly transformed into TiC. This transformation result in the following crystallographically sandwich-like structure: (0001) Ti2AlC // (0001) Ti3AlC2 // (111) TiC. The volume shrinkage associated to this transformation produces elongated holes that are partially filled by α-Al2O3. The stress caused by the volume shrinkage generates cracks at the surface, which makes the oxygen inwards diffusion easier and thus worsens the oxidation resistance the CG-Ti2AlC bulk.  相似文献   
6.
The molten salt method was used to synthesise the MAX phase compounds Ti2AlC and Ti3AlC2 from elemental powders. Between 900–1000?°C, Ti2AlC was formed alongside ancillary phases TiC and TiAl, which decreased in abundance with increasing synthesis temperature. Changing the stoichiometry and increasing the synthesis temperature to 1300?°C resulted in formation of Ti3AlC2 alongside Ti2AlC and TiC. The type of salt flux used had little effect on the product formation. The reaction pathway for Ti2AlC was determined to be the initial formation of TiC1-x templating on the graphite and titanium aluminides.  相似文献   
7.
A thermal barrier coating (TBC) system survived 500 hours in aggressive, 1300°C burner rig testing. The yttria-stabilized zirconia (7YSZ) TBC was plasma sprayed on an oxidation-resistant Ti2AlC-type MAX phase and tested in a jet fuel burner at 100 m/s, using 5 hours cycles. No coating spallation or surface recession was observed; Al2O3-scale growth produced a slight 2.4 mg/cm2 mass gain. The coating surface exhibited craze-cracked colonies of [111]flourite textured columns, with no visible moisture attack. The 20 μm alumina scale remained intact under the YSZ face, about twice that producing failure for TBC/superalloy systems. TiO2 nodules, initially formed on the uncoated backside, were removed, and Al2O3 was etched through volatile hydroxides formed in water vapor (~10%). Overall, the test indicated exceptional stability of the YSZ/Al2O3/Ti2AlC system under turbine conditions due in large part to close thermal expansion matching.  相似文献   
8.
This article represents a microstrip line–fed novel circular monopole antenna with ultra‐wideband (UWB) characteristics. The compact antenna provides reconfigurable notches at WLAN (5.2/5.8 GHz) and Wi‐MAX (5.5 GHz) frequency bands. The band rejection is achieved by etching an open‐ended L‐shaped slot in the ground plane, which effectively mitigates the interference between WLAN, Wi‐MAX, and UWB systems with an effective patch area of 36.26%. The proposed antenna operates from 3.05 to 12.11 GHz with VSWR 2 except at stopband (3.89‐5.93 GHz) to filter the WLAN and Wi‐MAX signals. The simulated return loss, gain, and radiation pattern of the proposed antenna has been experimentally verified with the fabricated one which holds a good agreement.  相似文献   
9.
Herein we study the infiltration behavior of Ti and Cu fillers into a Ti2AlC/Ti3AlC2MAX phase composites using a TIG-brazing process. The microstructures of the interfaces were investigated by scanning electron microscopy and energy dispersive spectrometry. When Ti2AlC/Ti3AlC2 comes into contact with molten Ti, it starts decomposing into TiCx, a Ti-richandTi3AlC; when in contact with molten Cu, the resulting phases are Ti2Al(Cu)C, Cu(Al), AlCu2Ti and TiC. In the presence of Cu at approximately 1630 °C, a defective Ti2Al(Cu)C phase was formed having a P63/mmc structure. Ti3AlC2 MAX phase was completely decomposed in presence of Cu or Ti filler-materials. The decomposition of Ti2AlC to Ti3AlC2 was observed in the heat-affected zone of the composite. Notably, no cracks were observed during TIG-brazing of Ti2AlC/Ti3AlC2 composite with Ti or Cu filler materials.  相似文献   
10.
The present study aims at synthesizing the Nb4AlC3 MAX phase by reactive hot pressing using Nb:Al:NbC as starting materials. In order to identify the reaction path, interrupted tests at intermediate temperatures were performed as well as differential thermal analyses (DTA) of powders. Coupling between DTA and XRD data and SEM/EDS analyses of the samples allows a better understanding of the reaction mechanisms. Pure and fully dense Nb4AlC3 samples were obtained and characterized for the first time by EBSD and SEM to assess, using an original method, grain size and microstructure. For instance, in the present study, an average grain length of 5–7?µm was obtained.Standard mechanical characterizations showed interesting properties: KIc≈?6?MPa?m1/2, E?≈?350?GPa and α?≈?7.10?6 °C?1. Oxidation performance of Nb4AlC3 was evaluated at 1100?°C under cyclic conditions. A breakaway regime was instantaneously established for this condition, thus demonstrating the impossibility of using such an unprotected material for structural applications at high temperature in air environment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号