首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4114篇
  免费   532篇
  国内免费   260篇
电工技术   2483篇
综合类   196篇
化学工业   299篇
金属工艺   141篇
机械仪表   97篇
建筑科学   28篇
矿业工程   46篇
能源动力   189篇
轻工业   16篇
水利工程   16篇
石油天然气   9篇
武器工业   19篇
无线电   869篇
一般工业技术   231篇
冶金工业   62篇
原子能技术   16篇
自动化技术   189篇
  2024年   7篇
  2023年   59篇
  2022年   74篇
  2021年   91篇
  2020年   123篇
  2019年   105篇
  2018年   82篇
  2017年   142篇
  2016年   156篇
  2015年   205篇
  2014年   246篇
  2013年   235篇
  2012年   314篇
  2011年   366篇
  2010年   326篇
  2009年   298篇
  2008年   308篇
  2007年   322篇
  2006年   283篇
  2005年   232篇
  2004年   163篇
  2003年   179篇
  2002年   129篇
  2001年   114篇
  2000年   56篇
  1999年   61篇
  1998年   40篇
  1997年   25篇
  1996年   22篇
  1995年   42篇
  1994年   34篇
  1993年   11篇
  1992年   8篇
  1991年   22篇
  1990年   8篇
  1989年   7篇
  1988年   6篇
  1987年   3篇
  1986年   1篇
  1985年   1篇
排序方式: 共有4906条查询结果,搜索用时 18 毫秒
1.
Carbon fibers (CFs) are a promising candidate as electrode materials for flexible supercapacitors given its light weight and moderate cost. In this study, the lignin used was partially separated from kraft bamboo pulping black liquor and the higher molecular weight fraction, unavoidably contains a small amount of silicon compounds, so named silicon-contained lignin. Novel CFs were prepared using commercial polyacrylonitrile (PAN) and the lignin by electrospinning and further carbonization. Even in the presence of silicon compounds, the fibrous morphology of precursor fibers was significantly good, and the CFs with uniform fiber diameter and high specific surface area up to 182 m2/g were obtained with an increase in silicon-contained lignin. The CFs fabricated from silicon-contained lignin and commercial PAN had higher specific capacitance (22.20 mF/cm2 at 10 mA/cm2) and superb cycling stability (94.21%) than that from silicon-free lignin or pure PAN separately.  相似文献   
2.
《Ceramics International》2022,48(14):20237-20244
Composite anode materials with a unique architecture of carbon nanotubes (CNTs)-chained spinel lithium titanate (Li4Ti5O12, LTO) nanoparticles are prepared for lithium ion capacitors (LICs). The CNTs networks derived from commercial conductive slurry not only bring out a steric hindrance effect to restrict the growth of Li4Ti5O12 particles but greatly enhance the electronic conductivity of the CNTs/LTO composites, both have contributed to the excellent rate capability and cycle stability. The capacity retention at 30 C (1 C = 175 mA g?1) is as high as 89.7% of that at 0.2 C with a CNTs content of 11 wt%. Meanwhile, there is not any capacity degradation after 500 cycles at 5 C. The LIC assembled with activated carbon (AC) cathode and such a CNTs/LTO composite anode displays excellent energy storage properties, including a high energy density of 35 Wh kg?1 at 7434 W kg?1, and a high capacity retention of 87.8% after 2200 cycles at 1 A g?1. These electrochemical performances outperform the reported data achieved on other LTO anode-based LICs. Considering the facile and scalable preparation process proposed herein, the CNTs/LTO composites can be very potential anode materials for hybrid capacitors towards high power-energy outputs.  相似文献   
3.
《Ceramics International》2022,48(2):2377-2384
Bi2O3, Y2O3 and MgO co-doped BaTiO3 (BT)-based X8R ceramics were synthesized successfully for the first time. The effects of the sintering temperature and Bi2O3, Y2O3 and MgO dopants on the dielectric properties were investigated systematically. Bi2O3 doping can increase the Curie temperature (Tc), but reduces the overall dielectric permittivity. On the other hand, Y2O3 doping is beneficial to the formation of core-shell microstructure and the increase of Tc, whereas MgO can prevent excessive Y2O3 from diffusing into grain core, and thereby further contributes to the generation of the core–shell microstructure. The generation of the typical core-shell microstructure was confirmed and investigated in detail by using transmission electron microscopy (TEM). It is argued that the synergistic effects of Bi2O3, Y2O3 and MgO co-doping in terms of the formation of the core-shell structure and the increase of Tc, can help improve the temperature stability of the dielectric permittivity effectively. Increasing the sintering temperature leads to an increase in the grain size, which in turn leads to an increase in the overall dielectric permittivity due to the grain size effect.  相似文献   
4.
(1-x)Sr0.7Pb0.15Bi0.1TiO3-xBi4Ti3O12 ((1-x)SPBT-xBIT, x = 0-0.125) bulk ceramics were developed and calcined via the solid-state method, aimed at the application of pulsed power capacitors. The phase structures, temperature stability, hysteresis loop, and discharge properties were systematically investigated. Considering both the temperature stability and dielectric properties, 0.925SPBT-0.075BIT bulk ceramics with a capacitance variation satisfying the X7R specification were developed for pulsed power capacitors. The energy storage density was 0.252 J/cm3, and the ceramics showed high temperature stability at 80 kV/cm. The discharge current waveforms of the 0.925SPBT-0.075BIT ceramics were recorded. A high discharge power density of approximately 1.01 × 108 W/kg with an 8 Ω load resistor and short discharge period of 84 ns were achieved at 50 kV/cm. The good temperature stability properties and high power density show that the 0.925SPBT-0.075BIT ceramics are well suited for pulsed power capacitors with a wide temperature range.  相似文献   
5.
The present work reports the realization of an analog fractional‐order phase‐locked loop (FPLL) using a fractional capacitor. The expressions for bandwidth, capture range, and lock range of the FPLL have been derived analytically and then compared with the experimental observations using LM565 IC. It has been observed that bandwidth and capture range can be extended by using FPLL. It has also been found that FPLL can provide faster response and lower phase error at the time of switching compared to its integer‐order counterpart. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
6.
This paper presents a fast distance relay for series compensated transmission lines based on the R–L differential-equation algorithm using the theory of equal transfer process of transmission lines. The measuring distances based on the proposed algorithm can fast approach the actual value of fault distance when a fault occurs in front of the series capacitor. When a fault occurs behind of the series capacitor, the fault loop, including the series capacitor, does not match the R–L transmission line model, so the measuring distances fluctuate severely. Based on this, the relative position of the fault with respect to the series capacitor can be judged effectively according to the fluctuation range of the measuring distances, and the accurate fault location can be obtained fast. A variety of PSCAD/EMTDC simulation tests show that the new relay has fast operating speed and high accuracy when applied to the long series compensated transmission lines.  相似文献   
7.
Electric recreational vehicles represent a new challenge in terms of power supply systems compared to the current light-duty electric vehicles, which achieve high performance and long-range. The recreational vehicles need to heed the limited dimension requirements while assuring the high requested power. This paper proposes an integration of Lithium-Ion Capacitor (LIC) with Fuel Cell (FC) without any power electronic device for a three-wheel electric motorcycle. Unlike other hybrid power supply systems, the proposed FC-LIC passive configuration is lighter, compact, more efficient, and simpler to implement. Due to the different impedance of the components the system is self-management, in which FC supplies the average power component and LIC operates as a low-pass filter. In this respect, a simulator is built based on experimental tests to study the system performance in terms of hydrogen consumption and FC degradation. Subsequently, the system is tested under three standard motorcycle driving cycles at three different FC system lifespan stages. The obtained results demonstrate that a passive topology can supply the requested power along different FC stages of life and reported just an increment of 12% of hydrogen consumption at the oldest condition compared to the new condition.  相似文献   
8.
MnO2 and Nb2O5 co-doped 0.9BaTiO3-0.1(Bi0.5Na0.5)TiO3 powders with excellent dielectric properties were fabricated using a conventional solid-state reaction method and sand milling. The doping effects of various amounts of MnO2 on the dielectric properties were investigated. The results revealed that the dielectric properties greatly depended on the concentration of MnO2. All the ceramics met the X9R specification. The dielectric loss decreased with an increasing concentration of MnO2. The specimen with an appropriate amount of 0.2 mol% MnO2 exhibited the most enhanced properties: high insulation resistance (2.49 × 1013 Ω/cm) and improved degradation properties. Multilayer ceramic capacitor (MLCC) chips were prepared by tape casting using a 0.2 mol% Mn-doped 9010BTBNT-based ceramic powder. The capacitance of the MLCC chip was approximately 100 nF, and the dielectric loss was approximately 1.75% at room temperature. The high-temperature accelerated lifetime was over 1000 hours under 250 V (five times the working voltage) and at 230°C, indicating that the MLCC chips possess superior reliability.  相似文献   
9.
For the defect that the mechanical properties of polypyrrole supercapacitors decrease with charge and discharge cycles, and the cycle stability is poor, a compound method of polypyrrole electrode for supercapacitors based on multi-walled carbon nanotubes is proposed. The structure of the formed polypyrrole coated multi-walled carbon nanotubes effectively increase the specific surface area of the electrode material, the utilization rate of the active material and the electrical conductivity, improve the rapid charge and discharge performance of the electrode material, and greatly improve cyclic stability of polypyrrole. The composite electrode materi- al of polypyrrole and functionalized multi-walled carbon nanotubes for supercapacitors is prepared by pulse current deposition meth- od. It is scanned at a scanning rate of 1000mV?s -1 in a 3mol?L -1 potassium chloride electrolyte, after 100,000-cycle, the capacity on- ly declines by 16%.  相似文献   
10.
Cold sintering process (CSP) offers a promising strategy for the fabrication of innovative and advanced high permittivity dielectric nanocomposite materials. Here, we introduce Ba(OH)2?8H2O hydrated flux as a new transient chemistry that enables the densification of BaTiO3 in a single step at a temperature as low as 150 °C. This remarkably low temperature is near its Curie transition of 125 °C, associated with a displacive phase transition. The cold sintered BaTiO3 shows a relative density of 95 % and a room temperature relative permittivity over 1000. This new hydrated flux permits the fabrication of a unique dense BaTiO3-polymer nanocomposite with a high volume fraction of ceramics ((1-x) BaTiO3x PTFE, with x = 0.05). The composite exhibits a relative permittivity of approximately 800, at least an order of magnitude higher than previous reports on polymer composites with BaTiO3 nanoparticle fillers that are typically well below 100. Unique high permittivity dielectric nanocomposites with enhanced resistivities can now be designed using polymers to engineer grain boundaries and CSP as a processing method opening up new possibilities in dielectric materials design.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号