首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31篇
  完全免费   94篇
  电工技术   125篇
  2022年   21篇
  2021年   23篇
  2020年   23篇
  2019年   30篇
  2018年   12篇
  2017年   7篇
  2016年   6篇
  2015年   2篇
  2012年   1篇
排序方式: 共有125条查询结果,搜索用时 46 毫秒
1.
基于堆叠去相关自编码器和支持向量机的窃电检测   总被引:3,自引:0,他引:3       下载免费PDF全文
已有窃电检测模型的准确率尚无法满足应用需求,是因其均将建模重点放在了分类算法的选择或改进上,而相对地忽视了特征提取过程。因此,提出一种基于深度学习的特征提取方法,即堆叠去相关自编码器。得益于深层结构和高度非线性,其能够从用户用电数据中提取到高度抽象和简明的特征。随后支持向量机将这些特征映射到指示是否窃电的标签。基于真实数据的算例测试,验证了所提窃电检测模型具有较高的检出率和较低的虚警率,同时也验证了堆叠去相关自编码器能够提取到有效的特征。  相似文献
2.
能源互联网大数据分析技术综述   总被引:1,自引:0,他引:1       下载免费PDF全文
大数据技术具有数据容量大、数据类型繁多、商业价值高、处理速度快的特点。能源互联网是信息通信与能源电力结合发展的高级阶段,以逐步实现信息通信基础设施与能源电力基础设施的一体化为特征。在能源互联网中不仅信息的种类和数量巨大,而且对信息的实时性要求也越来越高,因此大数据分析技术在能源互联网中具有广泛的应用前景。在大数据处理平台和大数据分析算法研究现状两方面综述了大数据分析技术,列举了大数据分析在能源互联网的典型应用场景和研究课题。  相似文献
3.
基于深度学习的暂态稳定评估与严重度分级   总被引:1,自引:0,他引:1       下载免费PDF全文
提出一种安全域概念下的堆叠降噪自动编码器和支持向量机集成模型相结合的暂态稳定评估方法。将故障前的潮流量作为输入,利用堆叠降噪自动编码器对输入量进行多层抽象表达,使用提取的各层特征训练支持向量机;建立支持向量机集成分类模型进行暂态稳定评估,对评估结果进行可信度分析,将输入空间划分为稳定区、边界区和失稳区;利用效用理论结合所提出的暂态稳定裕度指标对运行方式进行严重度分级。算例结果表明,所提暂态稳定评估方法具有更高的评估准确率和一定的泛化能力;所提严重度分级方法能够直观表现不同运行方式的危险程度。  相似文献
4.
基于卷积神经网络的高压电缆局部放电模式识别   总被引:1,自引:0,他引:1       下载免费PDF全文
由高压电缆不同类型缺陷诱发的局部放电(PD)的识别难度较大,尤其是某些相似度较高的电缆绝缘缺陷类型难以区分。提出了一种基于卷积神经网络(CNN)的高压电缆PD模式识别方法,研究了不同网络层数、不同激活函数以及不同池化方式对识别效果的影响,并与传统的支持向量机(SVM)和反向传播神经网络(BPNN)算法进行了对比。结果表明,相比SVM和BPNN,CNN的总体识别精度分别提高了3.71%和4.06%,且能较好地识别具有高相似度的电缆缺陷类型。  相似文献
5.
将深度学习概念应用到电缆早期故障识别中,提出结合S变换与堆叠自动编码器(SAE)的电缆早期故障识别方法。通过对故障相电流进行S变换,将获得的S变换模时频矩阵分为低、中和高频段。求取对应频段的能量熵和奇异熵等特征量,并组成特征向量后,将时频域特征向量作为SAE网络的输入,经过预训练和参数微调,得到最优训练参数。利用构建好的网络从输入数据中挖掘有用信息,从大量扰动中识别电缆早期故障。仿真结果表明,与传统模式识别方法相比,所提方法的精度更高。  相似文献
6.
基于深度学习的用户异常用电模式检测   总被引:1,自引:0,他引:1       下载免费PDF全文
针对电力用户的异常用电行为,提出一种基于深度学习的用户异常用电模式检测模型。利用Tensor Flow框架,构建了特征提取网络和多层特征匹配网络。基于长短期记忆(LSTM)的特征提取网络,从大量时间序列中提取出不同的序列特征。基于全连接网络(FCN)的多层特征匹配网络,利用提取出的特征数据,完成对异常用电数据的检测。实例分析表明,与非深度学习检测模型相比,所提模型可更加有效地完成异常用电模式检测。此外,与多层LSTM分类模型相比,所提模型具有更好的准确性和鲁棒性。  相似文献
7.
基于LSTM的发电机组污染物排放预测研究   总被引:1,自引:0,他引:1  
为了利用电力公司积累的海量历史污染物排放数据,形成可以减少污染物排放的调度框架。采用递归神经网络,结合发电机组输出功率与污染物排放量之间的关系,并使用批规范化等深度学习技术,对数据和模型进行学习和训练。实验结果表明,可以有效预测发电机组污染物排放量,解决传统回归分析方法无法适用的难以提取有效特征的问题。  相似文献
8.
基于三维卷积神经网络的配电物联网异常辨识方法   总被引:1,自引:0,他引:1       下载免费PDF全文
由于配电物联网中电力网与通信网高度耦合,单一网络的异常状态会交互作用至另一网络,可能进一步造成异常范围扩大,而单独采用电力网或通信网的异动信息难以全面、准确地辨识配电物联网异动源的类型和位置。因此,提出一种基于三维卷积神经网络(3D-CNN)的配电物联网异常类型辨识及定位方法。首先,分析了配电物联网通信流量特征并构建了基于Simulink和OPNET的配电物联网交互仿真模型;其次,提出了一种面向3D-CNN的样本构建方法,将配电物联网中每个节点的电气量和通信流量信息组成一个特征子像素,进而将配电物联网每个时刻的状态表示为一幅特征帧画面,形成隐含配电物联网异动过程的立方样本矩阵;随后,构建了包含三维特征提取网络和层级softmax分类器的深度学习模型,通过提取和辨识立方样本矩阵中隐含的异常信息,可以同时实现配电物联网异常类型和位置的判定;最后,利用IEEE 33节点配电物联网异常数据对模型进行测试,结果表明,所提方法可以对电力网短路故障、通信中断故障、通信数据异常引起的保护误动和拒动进行精确的分类及定位。  相似文献
9.
基于W-BiLSTM的可再生能源超短期发电功率预测方法   总被引:1,自引:0,他引:1       下载免费PDF全文
针对现有新能源超短期预测方法难以有效挖掘和分析数据的固有波动规律,且当时序过长时易丢失重要信息等问题,提出了一种基于注意力(Attention)机制的小波分解-双向长短时记忆网络(W-BiLSTM)超短期风、光发电功率预测方法.首先,利用小波分解提取输入时间序列的时域信息和频域信息.随后,考虑双向信息流,采用双向长短时记忆网络(BiLSTM)进行预测,引入注意力机制,通过映射加权和学习参数矩阵赋予BiLSTM隐含状态不同的权重,有选择性地获取更多有效信息.最后,通过实际数据进行仿真验证.仿真结果表明,所提模型与现有模型相比,具有良好的预测性能.  相似文献
10.
基于特征融合与深度学习的非侵入式负荷辨识算法   总被引:1,自引:0,他引:1       下载免费PDF全文
针对使用单一设备特征进行负荷辨识存在的局限性,提出了一种基于特征融合与深度学习的非侵入式负荷辨识算法。通过分析设备的高频采样数据提取了V-I轨迹图像特征与功率数值特征。利用人工神经网络的高级特征提取能力,实现了V-I轨迹图像特征与功率数值特征的融合。最后以复合特征作为设备新的特征训练反向传播(BP)神经网络进行非侵入式负荷辨识。使用PLAID数据集对算法辨识效果进行了验证,并对比了不同分类算法对特征融合的有效性与负荷辨识能力。结果表明,该算法利用不同特征之间的互补性,克服了使用V-I轨迹特征无法反映设备功率大小的缺点,从而提高了V-I轨迹特征的负荷辨识能力,并且在嵌入式设备中的运算速度为毫秒级。  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号