首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  电工技术   1篇
  2021年   1篇
排序方式: 共有1条查询结果,搜索用时 30 毫秒
1
1.
针对在使用深度学习对燃气轮机转子故障诊断过程中,因振动信号样本中正常运行数据多、故障数据少而使得模型故障诊断准确率低的问题,提出了一种采用深度迁移学习对燃气轮机转子进行故障诊断的方法。首先,使用典型行业样本数据集预训练第一层宽卷积核深度卷积神经网络(WDCNN)模型,给予模型初始的权重。其次,在源域中,使用某型燃气轮机试车获得的大量正常运行样本更新WDCNN模型的权重;在目标域中,利用源域训练的卷积层提取燃气轮机的正常和故障数据样本特征,然后使用支持向量机(support vector machines, SVM)进行分类识别,从而达到燃气轮机故障识别的目的。试车数据实验结果表明,该方法能够实现96%的识别准确率,验证了将轴承数据集预训练的深度学习模型迁移到燃气轮机转子领域进行故障诊断的可行性。  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号