首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31311篇
  免费   4980篇
  国内免费   2145篇
电工技术   5233篇
技术理论   2篇
综合类   3022篇
化学工业   3557篇
金属工艺   1405篇
机械仪表   2767篇
建筑科学   2115篇
矿业工程   733篇
能源动力   1650篇
轻工业   899篇
水利工程   506篇
石油天然气   762篇
武器工业   344篇
无线电   4975篇
一般工业技术   3552篇
冶金工业   621篇
原子能技术   384篇
自动化技术   5909篇
  2024年   113篇
  2023年   725篇
  2022年   1027篇
  2021年   1300篇
  2020年   1418篇
  2019年   1212篇
  2018年   1069篇
  2017年   1356篇
  2016年   1385篇
  2015年   1551篇
  2014年   2254篇
  2013年   2116篇
  2012年   2454篇
  2011年   2682篇
  2010年   1938篇
  2009年   1861篇
  2008年   1942篇
  2007年   2243篇
  2006年   1873篇
  2005年   1554篇
  2004年   1282篇
  2003年   1023篇
  2002年   844篇
  2001年   729篇
  2000年   535篇
  1999年   425篇
  1998年   292篇
  1997年   236篇
  1996年   225篇
  1995年   162篇
  1994年   150篇
  1993年   113篇
  1992年   69篇
  1991年   68篇
  1990年   45篇
  1989年   51篇
  1988年   22篇
  1987年   17篇
  1986年   16篇
  1985年   6篇
  1984年   7篇
  1983年   3篇
  1982年   8篇
  1981年   3篇
  1980年   11篇
  1979年   4篇
  1978年   4篇
  1964年   1篇
  1959年   2篇
  1951年   5篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Technical development in electronic devices is frequently stifled by their insufficient capacity and cyclic stability of energy-storage devices. The nano-structured materials have sensational importance for providing novel and optimized combination to overcome exiting boundaries and provide efficient energy storage systems. Metal hydroxide materials with high capacity for pseudo-capacitance properties have grabbed special attention. Lately, the blend of nickel and cobalt hydroxides has been considered as a favorable class of metallic hydroxide materials owing to their comparatively high capacitance and exceptional redox reversibility. The sulfonated carbon nanotube fluid (SCNTF) was prepared by the ion exchange method to be utilized as the exceptional templates due to astonishing specific surface area, ensuring the maximum utilization of the active material. The CoNi-layered double hydroxides (LDHs)/SCNTF core-shell nanocomposite was prepared by the simple solvothermal method. Structural analysis showed that the composite material had the high conductance of carbon materials, the pseudo-capacitance characteristics of metal hydroxides, and porous structure, which facilitates the ion shuttle when the electrolyte reacts with the active material. Electrochemical analysis results showed that CoNi-LDHs/SCNTF had excellent rate performance, reversible charge-discharge properties and cycle stability. It exhibited an extreme specific capacity of 1190.5 F g?1 at a current density of 1 A g?1; whereas specific capacity remained 953.7 F g?1 at the current density was 10 A g?1. In addition, the capacity retention rate after 5000 charge-discharge cycles at a current density of 20 A g?1 was 81.0%. The results indicated that the CoNi-LDHs/SCNTF core-shell nanocomposite material is cost efficient and an effective substitute in energy storage applications.  相似文献   
2.
Most protons in the solar wind belong to one of two different populations,the less dense beam protons and the denser core protons.The beam protons,with a velocity of(1-2)VA(VA is the local Alfvén speed),always drift relative to the core protons;this kind of distribution is unstable and stimulates several kinds of wave mode.In this study,using a 2D hybrid simulation model,we find that the original right-handed elliptically polarized Alfvén waves become linearly polarized,and eventually become right-handed and circularly polarized.Given that linearly polarized waves are a superposition of left-handed and right-handed waves,cyclotron resonance in the right-handed/left-handed component heats beam/core protons perpendicularly.The resonance between beam protons and right-handed polarized waves is stronger when the beam relative density is lower,resulting in more dramatic perpendicular heating of beam protons,whereas the situation is reversed when the beam relative density is larger.  相似文献   
3.
α-Ni(OH)2 is a promising candidate of the currently commercialized β-Ni(OH)2 due to its higher theoretical discharge capacity in alkaline solution; however, its instability and poor conductivity plague the practical application. Herein, we propose α-Ni(OH)2 with Co doping and spherical structure to strengthen the stability and enhance the conductivity and use it as the cathode for nickel-metal hydride batteries. Studies show that proper Co doping promotes the electrochemical reaction between the active materials and the electrolyte due to the spherical α-Ni(OH)2 with enlarged interlayer distance and abundant hole channels, as well as high conductivity of Co, therefore, the obtained spherical α-Ni(OH)2 with 7 mol% Co doping delivers significantly improved discharge capability, which is 384.6 mAh g?1 at 70 mA g?1 (0.2 C), increased by 54.3 mAh g?1 compared with pure α-Ni(OH)2, and at a high current of 5 C, it still gives 269.4 mAh g?1, in contrast 218.5 mA g?1 for the pure α-Ni(OH)2. Besides, the cycling stability of the α-Ni(OH)2 with 7 mol% Co doping maintains 340 cycles at a capacity retention of 80% (1C), which is extended 110 cycles in contrast to the pure α-Ni(OH)2. These results provide the underpinning platform of α-Ni(OH)2 for battery applications with high discharge ability and cycle life.  相似文献   
4.
Using covalent graphene derivatives in energy storage applications is promising. From this view, covalently cross-linked graphene oxide (GO) nanosheets are designed using polyoligomeric silsesquioxanes-propyl-NH2 (POPN). Then, by incorporating cobalt sulfide nanoparticles into the porous scaffold, a high-value nanocomposite is formed. In a typical three-electrode cell, this nanocomposite declared substantial specific capacity of 454 and 438 Fg-1 using cyclic voltammetry (CV) and charge-discharge (GCD) assessments. The device is assembled via two identical electrodes containing RGO-SiO3-NH2-poss-NH2-SiO3-RGO/cobalt sulfide (RGO-Si-POPN-Si-RGO/CoS2). Utilizing CV and GCD methods, specific capacitances of 328 and 315 Fg-1 are realized at a sweep rate and current density of 2 mVs?1 and 0.5 Ag-1, respectively. The device presents desirable energy density of 18.5 Whkg?1 at the power density of 325 Wkg-1. More impressively, around 97.9% of the specific capacitance is retained after 5000 charge-discharge cycles. The results confirm exceptional capacitive capabilities and super stability of the nanocomposite suitable for practical systems.  相似文献   
5.
针对现有基于视频监控的人流量统计方案成本高、算法复杂且不利于个人隐私保护的局限性,利用毫米波雷达体积小、成本低、分辨率高的特点,提出了一种基于双时间点检测的人流量监测方法。该方法先获取人体目标散射点位置和多普勒频移信息来构成点云数据,然后根据多普勒频移正负来判断人体的运动方向,并筛选具有高多普勒频移值的点云数据以降低干扰点对聚类结果的影响;在双时间点对特定区域内人员数量进行统计,并根据双时间点之间所获取的点云数据聚类结果对所统计人员数据进行修正。实验结果表明,该方法能够用匿名的方式以较高的正确率统计人员进出。  相似文献   
6.
7.
Two electron oxygen reduction reaction to produce hydrogen peroxide (H2O2) is a promising alternative technique to the multistep and high energy consumption anthraquinone process. Herein, Ni–Fe layered double hydroxide (NiFe-LDH) has been firstly demonstrated as an efficient bifunctional catalyst to prepare H2O2 by electrochemical oxygen reduction (2e? ORR) and oxygen evolution reaction (OER). Significantly, the NiFe-LDH catalyst possesses a high faraday efficiency of 88.75% for H2O2 preparation in alkaline media. Moreover, the NiFe-LDH catalyst exhibits excellent OER electrocatalytic property with small overpotential of 210 mV at 10 mA cm?2 and high stability in 1 M KOH solution. On this basis, a new reactor has been designed to electrolyze oxygen and generate hydrogen peroxide. Under the ultra-low cell voltage of 1 V, the H2O2 yield reaches to 47.62 mmol gcat?1 h?1. In order to evaluate the application potential of the bifunctional NiFe-LDH catalyst for H2O2 preparation, a 1.5 V dry battery has been used as the power supply, and the output of H2O2 reaches to 83.90 mmol gcat?1 h?1. The excellent electrocatalytic properties of 2e? ORR and OER make NiFe-LDH a promising bifunctional electrocatalyst for future commercialization. Moreover, the well-designed 2e? ORR-OER reactor provides a new strategy for portable production of H2O2.  相似文献   
8.
9.
The fuel cell/battery durability and hybrid system stability are major considerations for the power management of fuel cell hybrid electric bus (FCHEB) operating on complicated driving conditions. In this paper, a real time nonlinear adaptive control (NAC) with stability analyze is formulated for power management of FCHEB. Firstly, the mathematical model of hybrid power system is analyzed, which is established for control-oriented design. Furthermore, the NAC-based strategy with quadratic Lyapunov function is set up to guarantee the stability of closed-loop power system, and the power split between fuel cell and battery is controlled with the durability consideration. Finally, two real-time power management strategies, state machine control (SMC) and fuzzy logic control (FLC), are implemented to evaluate the performance of NAC-based strategy, and the simulation results suggest that the guaranteed stability of NAC-based strategy can efficiently prolong fuel cell/battery lifespan and provide better fuel consumption economy for FCHEB.  相似文献   
10.
Mangiferin (MGF) is a phenolic compound isolated from mango, but its poor solubility significantly limits its use. In this study, MGF was embedded into the inner aqueous phase of W1/O/W2 emulsions. Firstly, the dissolution method of MGF was determined. MGF remained stable in solution with pH 13 at 30 min, and its solubility reached 10 mg mL−1. When the pH of MGF solutions was adjusted from pH 13 to pH 6, MGF did not immediately crystallise, providing sufficient time to construct the MGF-loaded W1/O/W2 emulsions. Subsequently, the MGF-loaded W1/O/W2 emulsions were constructed using polyglycerol polyricinoleate (PGPR) and calcium caseinate (CAS). The formation and stability of the W1/O/W2 emulsions were investigated. The MGF-loaded W1/O/W2 emulsions stabilised with 1% PGPR and 1% – 3% CAS exhibited a low viscosity, limited loading capacity, and poor stability. Conversely, the MGF-loaded W1/O/W2 emulsions stabilised by 3%PGPR–3%CAS exhibited optimal loading capacity (encapsulation efficiency = 95.31% and loading efficiency = 0.91%) and stability, which was attributed to the fact that high viscosity and gel state retarded the migration of inner aqueous phase. These results indicated that the W1/O/W2 emulsions stabilised by PGPR and CAS may be a potential alternative for encapsulating mangiferin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号