首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38458篇
  免费   4364篇
  国内免费   2752篇
电工技术   4100篇
综合类   2920篇
化学工业   2440篇
金属工艺   1500篇
机械仪表   4055篇
建筑科学   601篇
矿业工程   870篇
能源动力   855篇
轻工业   761篇
水利工程   237篇
石油天然气   683篇
武器工业   425篇
无线电   8396篇
一般工业技术   3030篇
冶金工业   291篇
原子能技术   144篇
自动化技术   14266篇
  2024年   74篇
  2023年   550篇
  2022年   818篇
  2021年   1050篇
  2020年   1097篇
  2019年   986篇
  2018年   931篇
  2017年   1592篇
  2016年   1738篇
  2015年   2164篇
  2014年   2902篇
  2013年   2558篇
  2012年   3395篇
  2011年   3752篇
  2010年   2567篇
  2009年   2742篇
  2008年   2675篇
  2007年   2861篇
  2006年   2282篇
  2005年   1584篇
  2004年   1325篇
  2003年   1145篇
  2002年   882篇
  2001年   710篇
  2000年   615篇
  1999年   469篇
  1998年   377篇
  1997年   496篇
  1996年   271篇
  1995年   248篇
  1994年   193篇
  1993年   144篇
  1992年   121篇
  1991年   96篇
  1990年   60篇
  1989年   34篇
  1988年   28篇
  1987年   8篇
  1986年   5篇
  1984年   9篇
  1983年   4篇
  1982年   1篇
  1981年   4篇
  1980年   6篇
  1979年   2篇
  1977年   1篇
  1975年   1篇
  1951年   1篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
1.
针对高帧频、全局曝光和光谱平坦等成像应用需求,设计了一款高光谱成像用CMOS图像传感器。其光敏元采用PN型光电二极管,读出电路采用5T像素结构。采用列读出电路以及高速多通道模拟信号并行读出的设计方案来获得低像素固定图像噪声(FPN)和非均匀性抑制。芯片采用ASMC 0.35μm三层金属两层多晶硅标准CMOS工艺流片,为了抑制光电二极管的光谱干涉效应,后续进行了光谱平坦化VAE特殊工艺,并对器件的光电性能进行了测试评估。电路测试结果符合理论设计预期,成像效果良好,像素具备积分可调和全局快门功能,最终实现的像素规模为512×256,像元尺寸为30μm×30μm,最大满阱电子为400 ke^(-),FPN小于0.2%,动态范围为72 dB,帧频为450 f/s,相邻10 nm波段范围内量子效率相差小于10%,可满足高光谱成像系统对CMOS成像器件的要求。  相似文献   
2.
High-quality p-type semiconducting Co3O4 with mixed morphology of nanoparticles/nanorods are synthesized using a hydrothermal route for high response and selective hydrogen sulphide (H2S) sensor application. XRD and Raman studies revealed the crystal structure and molecular bonding for obtained Co3O4, respectively. The nanoparticles/nanorods-like structures were confirmed for Co3O4 using FESEM and TEM analysis. The EDS and XPS spectra analysis were carried out for elemental composition and chemical atomic states of Co3O4. The Co3O4 sensor is investigated for gas sensing properties in dynamic conditions. The sensor exhibited the highest selectivity towards H2S among various hydrogen-contained gases at 225 °C. The sensor revealed a high response of 357% and 44% for 100 and 10 ppm H2S gas concentrations, respectively. The Co3O4 sensor exhibited a systematic dynamic resistance response for 100–10 ppm range H2S gas. The excellent dynamic resistance repeatability of the sensor was shown towards 25 ppm H2S gas. The response of Co3O4 sensor was investigated at different operating temperatures and H2S concentrations. The sensor stability and H2S sensing mechanism for the Co3O4 sensor have been reported. Highly uniform and mixed nanostructures of Co3O4 can be the potential sensor material for real-time high-performance H2S sensor application.  相似文献   
3.
《Ceramics International》2022,48(11):15043-15055
This work reports magnetic permeability and ammonia gas sensing characteristics of La3+ substituted Co–Zn nano ferrites possessing chemical formula Co0.7Zn0.3LaxFe2-2xO4 (x = 0–0.1) synthesized by a sol-gel route. Refinement of X-ray diffraction (XRD) patterns of the ferrite powders by the Rietveld technique has revealed the creation of single-phase spinel structure. The tenancy of constituent cations at tetrahedral/octahedral sites was obtained from the refinement of XRD. The crystallite sizes calculated from the W–H method vary from 20 to 24 nm. The scanning electron microscope (SEM) profiles of the ferrite samples were analyzed for the morphological details. The energy dispersive X-ray analysis (EDAX) patterns of the samples were obtained to test the elemental purity of the ferrites within their stoichiometry. The transmission electron microscope (TEM) image of the ferrite (x = 0.1) exhibits the spherical and oval shaped particles with a mean size of 20 nm. Fourier transform infra-red (FTIR) spectra were analyzed to confirm the superseding of La3+ cations at octahedral sites. The Brunauer-Emmett-Teller (BET) analysis of nitrogen adsorption-desorption isotherms of the ferrites was performed to investigate the porous structure and to determine the surface area of the nanocrystalline ferrites. The oxidation states of the constituent ions were confirmed by means of X-ray photoelectron spectroscopy (XPS). The complex permeability as a function of frequency was studied to explore the effects of structural parameters on the magnetic behaviour of the ferrites. Analysis of gas sensing properties of the ferrites have proved that the Co–Zn–La ferrite with controlled La composition can be utilized as an effective ammonia gas sensing material in commercial gas sensors.  相似文献   
4.
针对一种煤矿用本安型缺水传感器在现场安装及维护难度大,以及抽采泵供水状态下管道内有水但传感器检测显示为无水,或抽采泵停止工作时传感器检测显示有水问题,分析原产品中磁体及探头感应装置结构。改进其结构形式,并优化安装,使检测稳定可靠。实现抽采泵管道用缺水传感器的可靠性设计和轻量化设计。  相似文献   
5.
In this communication, the structural, micro-structural, dielectric, electrical, magnetic, and leakage-current characteristics of a double perovskite (Y2CoMnO6) ceramic material have been reported. The material was synthesized via a high-temperature mixed-oxide route. The compound crystallizes in a monoclinic structure which is confirmed from preliminary X-ray structural study. The morphological study by using scanning electron micrograph reveals the almost homogeneous distribution of grains throughout the surface of the sample. The nature of frequency-dependence of dielectric constant has been described by the Maxwell-Wagner model. The occurrence of a dielectric anomaly in the temperature dependence of dielectric permittivity study demonstrates the ferroelectric-paraelectric phase transition in the material. From the Nyquist plots, we found the existence of both grain and grain boundary effects. The frequency dependence of conductivity was studied by the Jonscher’s Power law, and the conduction phenomenon obeys the large overlapping polaron tunneling model. By using the Arrhenius equation, the activation energy has been calculated which is nearly equal to the energy required for the hoping of the electron. Both impedance and conductivity analysis demonstrate that the sample exhibits negative temperature coefficient of resistance (NTCR) properties indicating the semiconducting type of material at high temperatures. The anti-ferromagnetic character of the material is observed from the nature of magnetic hysteresis loop. The leakage current analysis suggests that the conduction process in the material follows the space charge limited conduction phenomenon. Such material will be helpful for modern electronic devices and spintronic applications.  相似文献   
6.
The wearable intelligent electronic product similar to electronic skin has a great application prospect. However, flexible electronic with high performance pressure sensing functions are still facing great challenges. In this paper, the highly sensitive flexible electronic skin (FES) based on the PVDF/rGO/BaTiO3 composite thin film was fabricated using the near-field electrohydrodynamic direct-writing (NFEDW) method. The PVDF/rGO/BaTiO3 composite solution was directly written on flexible substrate by the NFEDW method to fabricate FES with micro/nano fiber structure, which has the function of sensing pressure with high sensitivity and fast response. The surface morphology and microstructure were characterized by SEM, AFM, and optical microscope in detail. The fabricated FES has high sensitivity (59 kPa−1) and faster response time (130 ms). FES has been successfully applied to the detection of human motion and subtle physiological signals. The experimental results show that FES has good stability and reliability. FES can recognize human motion, and it has a broad application prospect in the field of wearable devices.  相似文献   
7.
随着海洋资源勘探和海洋污染物监控工作的开展,水文数据的监测和采集等已经成为重要的研究方向。其中,水下无线传感器网络在水文数据采集过程中起着举足轻重的作用。本文研究的是水下无线传感器二维监测网络模型中,传感器节点数据采集的问题,其设计方法是通过自组织映射(Self-organizing mapping,SOM)对传感器节点进行路径最优化处理,结合优化的路径图形和K-means算法找到路径内部聚合点,利用聚合点和传感器的节点得到传感器通信半径内的数据采集点,最后通过SOM得到水下机器人(Autonomous underwater vehicle,AUV)到各个数据采集点采集数据的最优路径。经过实验验证,在水下1 200 m×1 750 m范围内布置52个传感器节点的情景下,数据采集点相比于传感器节点路径规划采用相同的采集顺序得到的路径优化了6.7%;对数据采集点重新进行自组织路径规划得到的路径比传感器结点路径的最优解提高了12.2%。增加传感器节点的数量,其结果也大致相同,因此采用该方法可以提高水下机器人采集数据的效率。  相似文献   
8.
In this work, we developed a novel system of isovalent Zr4+ and donor Nb5+ co-doped CaCu3Ti4O12 (CCTO) ceramics to enhance dielectric response. The influences of Zr4+ and Nb5+ co-substituting on the colossal dielectric response and relaxation behavior of the CCTO ceramics fabricated by a conventional solid-phase synthesis method were investigated methodically. Co-doping of Zr4+ and Nb5+ ions leads to a significant reduction in grain size for the CCTO ceramics sintered at 1060 °C for 10 h. XRD and Raman results of the CaCu3Ti3.8-xZrxNb0.2O12 (CCTZNO) ceramics show a cubic perovskite structure with space group Im-3. The first principle calculation result exhibits a better thermodynamic stability of the CCTO structure co-doped with Zr4+ and Nb5+ ions than that of single-doped with Zr4+ or Nb5+ ion. Interestingly, the CCTZNO ceramics exhibit greatly improved dielectric constant (~105) at a frequency range of 102–105 Hz and at a temperature range of 20–210 °C, indicating a giant dielectric response within broader frequency and temperature ranges. The dielectric properties of CCTZNO ceramics were analyzed from the viewpoints of defect-dipole effect and internal barrier layer capacitance (IBLC) model. Accordingly, the immensely enhanced dielectric response is primarily ascribed to the complex defect dipoles associated with oxygen vacancies by co-doping Zr4+ and Nb5+ ions into CCTO structure. In addition, the obvious dielectric relaxation behavior has been found in CCTZNO ceramics, and the relaxation process in middle frequency regions is attributed to the grain boundary response confirmed by complex impedance spectroscopy and electric modulus.  相似文献   
9.
《Ceramics International》2022,48(10):13524-13530
Thin film sensors are employed to monitor the health of hot-section components of aeroengine intelligence (for instance, blades), and electrical insulating layers are needed between the metal components and thin film sensors. For this purpose, the electrical insulation characteristics of an yttria-stabilized zirconia (YSZ)/Al2O3 multilayer insulating structure were investigated. First, YSZ thin films were deposited by DC reactive sputtering at various substrate temperatures, and the microstructural features were investigated by scanning electron microscopy and X-ray diffraction. The results indicate that the micromorphology of the YSZ thin film gradually became denser with increasing substrate temperature, and no new phases appeared. The compact and uniform topography of the YSZ thin film improved the insulation properties of the multilayer insulating structure and enhanced the adhesion of the thin film sensors. In addition, the electrical insulation properties of the YSZ/Al2O3 multilayer insulating structure were evaluated via insulation resistance tests from 25 to 800 °C, in which the YSZ thin film was deposited at 550 °C. The results show that the insulation resistance of the multilayer structure increased by an order of magnitude compared with that of the conventional Al2O3 insulating layer, reaching 135 kΩ (5.1 × 10?6 S/m) at 800 °C. Notably, the insulation resistance was still greater than 75 kΩ after annealing at 800 °C for 5 h. Finally, the shunt effect of the YSZ/Al2O3 multilayer insulating structure was estimated using a PdCr thin film strain gauge. The relative resistance error was 0.24%, which demonstrates that the YSZ/Al2O3 multilayer insulating structure is suitable for thin film sensors.  相似文献   
10.
《Ceramics International》2022,48(11):15293-15302
The in situ temperature monitoring of hot components in harsh environments remains a challenging task. In this study, SiBCN thin-film resistance grids with thicknesses of 1.8 μm were fabricated on alumina substrates via direct writing. Owing to their dense microscopic morphology and extremely high graphitisation level, the produced SiBCN films exhibited large high-temperature oxidation resistance and electrical conductivity. The resistance–temperature, stability, and repeatability characteristics of these films were examined in an aerobic environment at temperatures up to 800 °C. The obtained results revealed that the thermistor resistance decreased monotonously with increasing temperature from room temperature to 800 °C. The SiBCN film resistance variations observed during repeated temperature cycling in the regions of 505–620 °C and 610–720 °C were 0.09% and 1.7%, respectively. The high cyclability and stability of the SiBCN thin film thermistor suggested its potential applicability for the in situ temperature monitoring of hot components in harsh environments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号