首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44620篇
  免费   5596篇
  国内免费   2727篇
电工技术   10220篇
综合类   5512篇
化学工业   1957篇
金属工艺   1334篇
机械仪表   3463篇
建筑科学   8034篇
矿业工程   1788篇
能源动力   2242篇
轻工业   1465篇
水利工程   1860篇
石油天然气   1777篇
武器工业   654篇
无线电   2898篇
一般工业技术   3266篇
冶金工业   1347篇
原子能技术   396篇
自动化技术   4730篇
  2024年   85篇
  2023年   622篇
  2022年   1234篇
  2021年   1416篇
  2020年   1508篇
  2019年   1211篇
  2018年   1118篇
  2017年   1488篇
  2016年   1528篇
  2015年   1726篇
  2014年   2817篇
  2013年   2353篇
  2012年   3440篇
  2011年   3776篇
  2010年   2782篇
  2009年   2968篇
  2008年   2841篇
  2007年   3511篇
  2006年   3069篇
  2005年   2478篇
  2004年   1977篇
  2003年   1697篇
  2002年   1337篇
  2001年   1166篇
  2000年   946篇
  1999年   770篇
  1998年   516篇
  1997年   514篇
  1996年   436篇
  1995年   357篇
  1994年   296篇
  1993年   194篇
  1992年   165篇
  1991年   124篇
  1990年   97篇
  1989年   104篇
  1988年   92篇
  1987年   40篇
  1986年   24篇
  1985年   15篇
  1984年   22篇
  1983年   13篇
  1982年   17篇
  1981年   8篇
  1980年   9篇
  1979年   15篇
  1966年   2篇
  1959年   6篇
  1957年   2篇
  1951年   2篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
2.
3.
The durability of metal plate proton exchange membrane fuel cell (PEMFC) stack is still an important factor that hinders its large-scale commercial application. In this paper, we have conducted a 1000 h durability test on a 1 kW metal plate PEMFC stack, and explored the degradation of the core components. After 1000 h of dynamic load cycles, the voltage decay percentage of the stack under the current densities of 1000 mA cm?2 is 5.67%. By analyzing the scanning electron microscopy (SEM) images, the surfaces of the metal plates are contaminated locally by organic matter precipitated from the membrane electrode assembly (MEA). The SEM images of the catalyst coated membrane (CCM) cross section indicate that the MEA has undergone severe degradation, including the agglomeration of the catalyst layer, and the thinning and perforation of the PEM. These are the main factors that cause the rapid increase in hydrogen crossover flow rate and performance decay of the PEMFC stack.  相似文献   
4.
针对合流制管网系统在雨天溢流污染严重,造成城市水体黑臭现象的问题,以银川市某高密度城区合流制管网系统为例,基于SWMM模型,在短历时设计降雨和长历时设计降雨两种条件下,模拟分析了合流制溢流(CSO)调蓄池、雨污管道混错接改造、绿化带海绵化改造等“灰绿”协同措施对CSO污染的影响。结果表明:CSO调蓄池、雨污管道混错接改造、绿化带海绵化改造及“灰绿”措施结合4种方案在短历时、长历时设计降雨条件下,随着降水量的增加,溢流水量及溢流污染物负荷均增加,溢流削减率均逐渐减小,其中“灰绿”措施结合方案对溢流污染的削减效果最为显著;重现期小于5 a时,溢流水量削减率与溢流污染物负荷削减率基本达到80%;降雨条件为中雨时,污染物负荷削减率基本达到75%;重现期为20 a时,溢流水量削减率及TSS、COD、TP、NH^(+)_(4)-N负荷削减率分别达到64%、70%、70%、70%、70%;降雨条件为大雨时,溢流水量削减率及TSS、COD、TP、NH^(+)_(4)-N负荷削减率分别达到28%、32%、26%、31%、33%。  相似文献   
5.
乡村产业中的化石能源设备逐渐被电能技术替代,引起了乡村负荷波动增大、部分时段产生集中高负荷的问题。为了解决以上问题,将低品位清洁能源应用至乡村的茶叶生产中,针对烘茶全过程的工艺要求提出了跨临界CO2热泵烘茶技术;并以某茶叶生产乡村为对象,对其代表台区的全年日用电量及产茶日负荷进行了分析,得出采用CO2热泵烘茶后其负荷得到大幅度削减,整体可降低至原负荷的39.6%~46.8%,峰值负荷与平时负荷的比值由原本的13.6降至5.4~6.2。跨临界CO2热泵应用至农产品生产中可有效缓解乡村供电压力。  相似文献   
6.
7.
In this article, pre-assembly hot-press pressure and thermal expansion effects in gas-diffusion layers (GDLs) are addressed to explore the practicalities of the constitutive model reported in the companion article. A facile technique is proposed to include deformation history dependent residual strain effects. The model is implemented in the numerical environment and compared with widely followed conventional models such as isotropic and orthotropic material models. With the normal and accelerated thermal expansion effects no significant variation in stresses or strains is reported with the compressible GDL model in contrast to the conventional incompressible form of the GDL model. The present work identifies the critical differences with advanced and extended variants of the model along with conventional GDL material models in terms of planar stress/strain distribution and the membrane response. Finally, the model is simulated for micro-cyclic stress loads of varying amplitudes that imitate the real working conditions of fuel cell. The inelastic energy dissipation in GDLs is predicted using the proposed model, which is utilized further to distinguish the safe (elastic) and unsafe (inelastic shakedown) operating limits. The inelastic collapse of GDLs is shown to be a active function of high amplitude micro-cyclic load with high initial clamping load.  相似文献   
8.
A hybrid system with jointed battery and PEMFC is popular and of great potential in New Energy Vehicle (NEV) application. However, reliability and efficiency remain to be improved for commercial products. To reflect the complicated physics inside the proton exchange membrane fuel cell (PEMFC), the PEMFC model consisting of inner muti-physics process and other accessories was built, then a complete hybrid system was established when a matched battery, DC/DC, regenerative braking were taken into consideration. Based on the above model, the stack state and system performance under standard cycle for heavy duty vehicle-CWTVC were obtained. According to the simulation results, fuel cell states such as pressure, water content and voltage suffers severe oscillation with external load, especially in the highway cycle. Membrane electrode assembly (MEA) suffers from pressure impact with average value of more than 24 kPa in highway cycle. In the aspect of relative humidity, the PEMFC stack is most threatened in road cycle. As for the hybrid system, its efficiency and state of charge (SOC) fluctuation perform worst in urban cycle and road cycle respectively, while its highest efficiency occurs in road test. Operating mode of fuel cell has influence on hybrid system. When 3-level mode of fuel cell output was applied, the efficiency increased to its peak value at medium level of 28 kW and then declined gradually. H2 consumption had an opposite trend compared to efficiency. In the aspect of battery SOC, it declines in operating process and its fluctuations decreases when medium level got bigger. The 3-level mode and 4-level mode were compared using this model. It can be concluded that although 3-level mode performs slightly better in hybrid system efficiency, H2 consumption, pressure impact, it does not have absolute advantage over 4-level mode in other indicators.  相似文献   
9.
In this investigation, low-cement castables were prepared using 70% alumina grog aggregates obtained from crushed alumina brick waste. The aggregates were thermally treated at 1550 °C for 3 h. Four types of low-cement castables were prepared with various types of aggregates (alumina grog with or without thermal treatment) and fillers (with or without zircon addition), and they were evaluated in terms of their physical, thermal, and chemical properties. Microstructural analysis via scanning electron microscopy (SEM) was performed on the castables before and after slag attack. Compared to the other fabricated castables, the thermally treated alumina grog castables with zircon showed better physical properties, such as a higher bulk density, cold crushing strength, and modulus of rupture and a lower apparent porosity and water absorption. In addition, they had a higher positive linear thermal expansion, refractoriness under load, permanent linear change, and hot modulus of rupture. The results of the SEM with energy dispersive X-ray analysis of the prepared castables confirmed that the mullite and anorthite phases were predominant when zircon was not added and the zircon–mullite phase additionally appeared upon the incorporation of zircon. A quantitative elemental analysis via X-ray fluorescence spectroscopy was employed to determine the composition of the castables. X-ray diffraction analysis showed that the alumina grog castables had a high mullite and low anorthite content, and the thermally treated alumina grog had a high anorthite, low mullite, and high zircon content. The improvement in the mechanical and thermo-mechanical properties of the castables with thermally treated alumina grog and added zircon can be attributed to the formation of the zircon–mullite phase with a low mullite phase content.  相似文献   
10.
Today, utility meters for water are tested for measurement behavior at stable operating conditions at specified flow rates as part of the approval process. The measurement error that occurs during start and stop or when changing between flow rates may not be taken into account. In addition, there are new technologies whose measuring behavior under real-world conditions is only known to a limited extend. To take these facts into account, a new method has been developed and tested to determine the measurement behavior of water meters under dynamic load profiles as they occur in the real application. For this purpose, a test rig for flow rate measurement was extended by a cavitation nozzle apparatus and the generation of dynamic load profiles was validated. For the cavitation nozzles used, possible factors influencing the flow rate, such as temperature and purity of the water as well as the upstream pressure were investigated. Using different types of domestic water meters, the applicability of the dynamic test procedure was demonstrated and the measurement behavior of the meters was characterised.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号