首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   101391篇
  免费   12025篇
  国内免费   5761篇
电工技术   14715篇
技术理论   13篇
综合类   8062篇
化学工业   13619篇
金属工艺   3881篇
机械仪表   5068篇
建筑科学   12020篇
矿业工程   3483篇
能源动力   13506篇
轻工业   2808篇
水利工程   2156篇
石油天然气   3521篇
武器工业   1062篇
无线电   10005篇
一般工业技术   10399篇
冶金工业   4198篇
原子能技术   1673篇
自动化技术   8988篇
  2024年   253篇
  2023年   2195篇
  2022年   3615篇
  2021年   4141篇
  2020年   4256篇
  2019年   3615篇
  2018年   2994篇
  2017年   3831篇
  2016年   4018篇
  2015年   4070篇
  2014年   6568篇
  2013年   6497篇
  2012年   7323篇
  2011年   8197篇
  2010年   6055篇
  2009年   6224篇
  2008年   5798篇
  2007年   6288篇
  2006年   5194篇
  2005年   4086篇
  2004年   3514篇
  2003年   3318篇
  2002年   3295篇
  2001年   2939篇
  2000年   2540篇
  1999年   1583篇
  1998年   1189篇
  1997年   953篇
  1996年   886篇
  1995年   671篇
  1994年   633篇
  1993年   435篇
  1992年   375篇
  1991年   294篇
  1990年   252篇
  1989年   190篇
  1988年   160篇
  1987年   109篇
  1986年   72篇
  1985年   113篇
  1984年   102篇
  1983年   63篇
  1982年   81篇
  1981年   39篇
  1980年   50篇
  1979年   32篇
  1978年   16篇
  1977年   12篇
  1959年   7篇
  1951年   16篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
夏敏浩  赵万剑  王骏 《中州煤炭》2022,(7):189-194,200
为了提高配电网差异化节能降耗效果,解决现有潜力评估方法存在的应用性能差的问题,提出碳中和背景下配电网差异化节能降耗潜力优化评估方法。根据配电网的空间结构,构建相应的等值电路模型。在该模型下,从设备损耗和运行附加损耗2个方面计算配电网的损耗量。根据损耗量计算结果,确定配电网差异化碳中和节能降耗方式。从静态和动态2个角度设置潜力评估指标,通过指标数据处理、指标权重求解等步骤,得出配电网差异化节能降耗潜力的综合量化评估结果。将设计潜力评估方法应用到配电网的差异化节能降耗改造工作中,能够有效降低配电网的实际线损量、降低区域损耗费用,并具有较高的应用价值。  相似文献   
2.
《工程爆破》2022,(2):76-78
在较为复杂的环境下,爆破拆除钢筋混凝土氧化铝储槽。该储槽自重大、呈圆形,内有4根立柱支撑下料漏斗。为使储槽顺利定向倒塌,通过爆破方案选择、参数确定,采取梯形切口和预处理以及安全防护和减振措施,使储槽爆破拆除获圆满成功。  相似文献   
3.
分析了静电产生的原因,阐述了粉体含能材料生产中的静电起电现象、静电的危害、静电安全性评估标准以及建立在此标准基础上的静电放电危险的评价办法,提出了粉体含能材料在生产、运输中所需要采取的静电防护措施。  相似文献   
4.
In this study, some locations with different climates, off-grid zero energy buildings with hydrogen energy storage systems are designed, and transient analysis is conducted. These considered buildings supply their electricity consumption without using the electrical grid and PV panels or wind turbines. Also, they supply thermal comfort to occupants by using a vapor compression chiller and humidifier. Domestic hot water of occupants is supplied using solar collectors. For analyzing building's performance and objectives achievement, TRNSYS software is used. Also, for evaluating occupant thermal comfort, the Fanger model is used. The considered building is a one-story building with a 150 m2 area. Four occupants are considered. Both of them are seated at rest, and another is seated with light working such as typing. Using the Fanger model equation and MATLAB software, the thermal comfort of occupants is determined. For domestic hot water consumption, verified profiles that vary during 24 h of the day are considered. Achieved results show that for humid and cold cities, PV panels with an area of 73 and 76 m2 can be supplied the required electricity of considered building with four occupants and battery state of charge is higher than 50% and 10%, respectively. Moreover, with a suitable air conditioner system, the predicted percentage of dissatisfied (PPD) can be lower than 12% and 8% for humid and cold cities. Therefore, the building can be converted to a zero-energy building using its rooftop area.  相似文献   
5.
In this work, the SnS2 nanoflowers (SnS2 NFs) were solvothermally prepared in the solvent of ethanol, while SnS2 nanoplates (SnS2 NPs) were obtained through the identical conditions except for the solvent of water. The flowers were assembled with numerous nanosheets with very thin thickness, and the NPs exhibited hexagonal shape. When used as the battery-type electrode material for supercapacitors, the SnS2 NFs delivered a specific capacity of as high as 264.4 C g?1 at 1 A g?1, which was higher than the 201.6 C g?1 of SnS2 NPs. Furthermore, a hybrid supercapacitor (HSC) was assembled with the SnS2 as positive electrode and activated carbon (AC) as negative electrode, respectively. The SnS2 NFs//AC HSC exhibited a high energy density of 28.1 Wh kg?1 at 904.3 W kg?1, which was higher than the 24.2 Wh kg?1 at 844.3 W kg?1 of SnS2 NPs//AC HSC. Especially, when the power density was enhanced to the highest value of 8666.8 W kg?1, the NFs-based device could still hold 20.4 Wh kg?1. In addition, both HSC devices showed an excellent cycling stability after 5000 cycles at 5 A g?1. The present method is simple and can be extended to the preparation of other transition metal sulfides (TMSs)-based electrode materials with brilliant electrochemical performance for supercapacitors.  相似文献   
6.
In the present work, the heating performance of a new system combined with a new modified baseboard radiator and fan coil is investigated. Using longitudinal fins with special geometry and also forced airflow at the end of the system causes that at the lower inlet water temperature compared with the conventional models, higher heat output rate be obtained. The heat output rate of the new modified system is obtained by experimental metrology based on the European Standard No. EN-442. Temperature and velocity distribution in the room space is done by simulation of the modified system in the Flovent software. Computational fluid dynamics (CFD) results are validated against experimental results and there is a good agreement between them. Also, the energy consumption of the system during the winter season is calculated in TRANSYS software. Experimental results show that the heat output rate of a new modified heating system with inlet water temperature in the range of 45–55°C is on average 4.17 times higher compared with the conventional model. CFD simulation also showed that the combined system provides good thermal comfort conditions. Energy consumption of the new system reduced about 13% compared with conventional models.  相似文献   
7.
The coupling of reaction and diffusion between neighboring active sites in the catalyst pore leads to the spatiotemporal fluctuation in component concentration, which is very important to catalyst performance and hence its optimal design. Molecular dynamics simulation with hard-sphere and pseudo-particle modeling has previously revealed the non-stochastic concentration fluctuation of the reactant/product near isolated active site due to such coupling, using a simple model reaction of A → B in 2D pores. The topic is further developed in this work by studying the concentration fluctuation due to such coupling between neighboring active sites in 3D pores. Two 3D pore models containing an isolated active site and two adjacent active sites were constructed, respectively. For the isolated site, the concentration fluctuation intensifies for larger pores, but the product yield decreases, and for a given pore size, the product yield reaches a peak at a certain reactant concentration. For two neighboring sites, their distance (d) is found to have little effect on the reaction, but significant to the diffusion. For the same reaction competing at both sites, larger d leads to more efficient diffusion and better overall performance. However, for sequential reactions at the two sites, higher overall performance presents at a smaller d. The results should be helpful to the catalyst design and reaction control in the relevant processes.  相似文献   
8.
In this work, hydrate based separation technique was combined with membrane separation and amine-absorption separation technologies to design hybrid processes for separation of CO2/H2 mixture. Hybrid processes are designed in the presence of different types of hydrate promoters. The conceptual processes have been developed using Aspen HYSYS. Proposed processes were simulated at different flow rates for the feed stream. A comprehensive cost model was developed for economic analysis of novel processes proposed in this study. Based on the results from process simulation and equipment sizing, the amount of total energy consumption, fixed cost, variable cost, and total cost were calculated per unit weight of captured CO2 for various flow rates of feed stream and in the presence of different hydrate promoters. Results showed that combination of hydrate formation separation technique with membrane separation technology results in a CO2 capture process with lowest energy consumption and total cost per unit weight of captured CO2. As split fraction and heat of hydrate formation increases, the share of hydrate formation section in total energy consumption increases. When TBAB is applied as hydrate promoter, due to its higher hydrate separation efficiency, more amount of CO2 is captured in hydrate formation section and consequently the total cost for process decreases considerably. Hybrid hydrate-membrane process in the presence of TBAB as hydrate promoter with 29.47 US$/ton CO2 total cost is the best scheme for hybrid hydrate CO2 capture process. Total cost for this process is lower than total cost for single MDEA-based absorption process as the mature technology for CO2 capture.  相似文献   
9.
Eco-friendly quantum dots (QDs) can be termed green QDs which stand as an attractive choice to modify the properties of known semiconductors in the direction of getting efficient photoelectrodes for solar-induced photoelectrochemical (PEC) splitting of water, due to their peculiar properties. Thus, it is of high significance to analyze their merit/demerit as an effective scaffold in PEC cell. QDs are known for their excellent optical properties however, the coupling of green QDs with semiconductor is not only useful in improving absorption characteristics but also promotes charge transfer. This review has undertaken the critical analysis on the worldwide research going on the green QDs modified photoelectrode with respect to their optical, electrical & photoelectrochemical properties, role, usefulness, efficiency, and finally the success in PEC system for hydrogen production. Various methods on the facile synthesis & sensitization techniques of green QDs available in the literature have also been discussed. Further, recent advances on the development of green QDs based photo-electrode, along with major challenges of using green QDs in this field have also been presented.  相似文献   
10.
In the last few decades, global warming, environmental pollution, and an energy shortage of fossil fuel may cause a severe economic crisis and health threats. Storage, conversion, and application of regenerable and dispersive energy would be a promising solution to release this crisis. The development of porous carbon materials from regenerated biomass are competent methods to store energy with high performance and limited environmental damages. In this regard, bio-carbon with abundant surface functional groups and an easily tunable three-dimensional porous structure may be a potential candidate as a sustainable and green carbon material. Up to now, although some literature has screened the biomass source, reaction temperature, and activator dosage during thermochemical synthesis, a comprehensive evaluation and a detailed discussion of the relationship between raw materials, preparation methods, and the structural and chemical properties of carbon materials are still lacking. Hence, in this review, we first assess the recent advancements in carbonization and activation process of biomass with different compositions and the activity performance in various energy storage applications including supercapacitors, lithium-ion batteries, and hydrogen storage, highlighting the mechanisms and open questions in current energy society. After that, the connections between preparation methods and porous carbon properties including specific surface area, pore volume, and surface chemistry are reviewed in detail. Importantly, we discuss the relationship between the pore structure of prepared porous carbon with surface functional groups, and the energy storage performance in various energy storage fields for different biomass sources and thermal conversion methods. Finally, the conclusion and prospective are concluded to give an outlook for the development of biomass carbon materials, and energy storage applications technologies. This review demonstrates significant potentials for energy applications of biomass materials, and it is expected to inspire new discoveries to promote practical applications of biomass materials in more energy storage and conversion fields.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号