首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25333篇
  免费   3721篇
  国内免费   1533篇
电工技术   9155篇
技术理论   1篇
综合类   2149篇
化学工业   1531篇
金属工艺   1612篇
机械仪表   2156篇
建筑科学   608篇
矿业工程   561篇
能源动力   833篇
轻工业   225篇
水利工程   519篇
石油天然气   694篇
武器工业   255篇
无线电   4807篇
一般工业技术   1450篇
冶金工业   549篇
原子能技术   146篇
自动化技术   3336篇
  2024年   67篇
  2023年   377篇
  2022年   569篇
  2021年   693篇
  2020年   788篇
  2019年   639篇
  2018年   657篇
  2017年   914篇
  2016年   1057篇
  2015年   1219篇
  2014年   1666篇
  2013年   1436篇
  2012年   2033篇
  2011年   2324篇
  2010年   1749篇
  2009年   1722篇
  2008年   1656篇
  2007年   1985篇
  2006年   1706篇
  2005年   1337篇
  2004年   1104篇
  2003年   932篇
  2002年   783篇
  2001年   637篇
  2000年   582篇
  1999年   426篇
  1998年   300篇
  1997年   260篇
  1996年   219篇
  1995年   175篇
  1994年   146篇
  1993年   116篇
  1992年   89篇
  1991年   65篇
  1990年   41篇
  1989年   30篇
  1988年   28篇
  1987年   15篇
  1986年   10篇
  1985年   6篇
  1984年   9篇
  1983年   3篇
  1982年   4篇
  1981年   2篇
  1980年   4篇
  1978年   2篇
  1976年   1篇
  1966年   1篇
  1964年   1篇
  1959年   1篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
In this work, we developed a novel system of isovalent Zr4+ and donor Nb5+ co-doped CaCu3Ti4O12 (CCTO) ceramics to enhance dielectric response. The influences of Zr4+ and Nb5+ co-substituting on the colossal dielectric response and relaxation behavior of the CCTO ceramics fabricated by a conventional solid-phase synthesis method were investigated methodically. Co-doping of Zr4+ and Nb5+ ions leads to a significant reduction in grain size for the CCTO ceramics sintered at 1060 °C for 10 h. XRD and Raman results of the CaCu3Ti3.8-xZrxNb0.2O12 (CCTZNO) ceramics show a cubic perovskite structure with space group Im-3. The first principle calculation result exhibits a better thermodynamic stability of the CCTO structure co-doped with Zr4+ and Nb5+ ions than that of single-doped with Zr4+ or Nb5+ ion. Interestingly, the CCTZNO ceramics exhibit greatly improved dielectric constant (~105) at a frequency range of 102–105 Hz and at a temperature range of 20–210 °C, indicating a giant dielectric response within broader frequency and temperature ranges. The dielectric properties of CCTZNO ceramics were analyzed from the viewpoints of defect-dipole effect and internal barrier layer capacitance (IBLC) model. Accordingly, the immensely enhanced dielectric response is primarily ascribed to the complex defect dipoles associated with oxygen vacancies by co-doping Zr4+ and Nb5+ ions into CCTO structure. In addition, the obvious dielectric relaxation behavior has been found in CCTZNO ceramics, and the relaxation process in middle frequency regions is attributed to the grain boundary response confirmed by complex impedance spectroscopy and electric modulus.  相似文献   
2.
3.
In this communication, the structural, micro-structural, dielectric, electrical, magnetic, and leakage-current characteristics of a double perovskite (Y2CoMnO6) ceramic material have been reported. The material was synthesized via a high-temperature mixed-oxide route. The compound crystallizes in a monoclinic structure which is confirmed from preliminary X-ray structural study. The morphological study by using scanning electron micrograph reveals the almost homogeneous distribution of grains throughout the surface of the sample. The nature of frequency-dependence of dielectric constant has been described by the Maxwell-Wagner model. The occurrence of a dielectric anomaly in the temperature dependence of dielectric permittivity study demonstrates the ferroelectric-paraelectric phase transition in the material. From the Nyquist plots, we found the existence of both grain and grain boundary effects. The frequency dependence of conductivity was studied by the Jonscher’s Power law, and the conduction phenomenon obeys the large overlapping polaron tunneling model. By using the Arrhenius equation, the activation energy has been calculated which is nearly equal to the energy required for the hoping of the electron. Both impedance and conductivity analysis demonstrate that the sample exhibits negative temperature coefficient of resistance (NTCR) properties indicating the semiconducting type of material at high temperatures. The anti-ferromagnetic character of the material is observed from the nature of magnetic hysteresis loop. The leakage current analysis suggests that the conduction process in the material follows the space charge limited conduction phenomenon. Such material will be helpful for modern electronic devices and spintronic applications.  相似文献   
4.
Prediabetes is a high-risk condition for type 2 diabetes (T2D). Pancreatic β-cells adapt to impaired glucose regulation in prediabetes by increasing insulin secretion and β-cell mass expansion. In people with prediabetes, metformin has been shown to prevent prediabetes conversion to diabetes. However, emerging evidence indicates that metformin has negative effects on β-cell function and survival. Our previous study established the Nile rat (NR) as a model for prediabetes, recapitulating characteristics of human β-cell compensation in function and mass expansion. In this study, we investigated the action of metformin on β-cells in vivo and in vitro. A 7-week metformin treatment improved glucose tolerance by reducing hepatic glucose output and enhancing insulin secretion. Although high-dose metformin inhibited β-cell glucose-stimulated insulin secretion in vitro, stimulation of β-cell insulin secretion was preserved in metformin-treated NRs via an indirect mechanism. Moreover, β-cells in NRs receiving metformin exhibited increased endoplasmic reticulum (ER) chaperones and alleviated apoptotic unfold protein response (UPR) without changes in the expression of cell identity genes. Additionally, metformin did not suppress β-cell mass compensation or proliferation. Taken together, despite the conflicting role indicated by in vitro studies, administration of metformin does not exert a negative effect on β-cell function or cell mass and, instead, early metformin treatment may help protect β-cells from exhaustion and decompensation.  相似文献   
5.
在80 MHz~1 GHz频段,单个功率管输出功率能达到100 W以上,为研制输出功率400 W的功率放大器,文中设计了四路功率合成器。该合成器需要实现功率容量大、工作频带宽、体积小的设计目标。在功率容量方面,文中采用悬置带状线结构,其功率容量远远大于微带线结构;在工作频带方面,采用切比雪夫九节阻抗变换器,将工作带宽拓宽为80 MHz~1 GHz;在体积方面,文中合成器的功率合成部分采用Y型节级联实现四路功率合成,阻抗变换部分采用切比雪夫阻抗变换器进行阻抗变换,该结构相较于磁环巴伦功率合成器,不但具有损耗小、平坦度高的优点,而且通过将阻抗变换器设计成曲折的形状,进一步缩小了合成器体积。仿真与实测结果显示该合成器在80 MHz~1 GHz范围内还具有较高的平坦度,合成效率可达90%以上。  相似文献   
6.
《Ceramics International》2022,48(14):20000-20009
Zinc oxide (ZnO) offers a major disadvantage of asymmetry doping in terms of reliability, stability, and reproducibility of p-type doping, which is the main hindrance in realization of optoelectronic devices. The problem is even more complicated due to formation of various native defects in unintentionally doped n-type ZnO. The realization of p-type conductivity in doped ZnO requires an in-depth understanding of the formation of an effective shallow acceptor, as well as donor-acceptor compensation. Photophysical properties such as photoconductivity along with photoluminescence (PL) studies have unprecedentedly and effectively been utilized in this work to monitor the evolution of various in-gap defects. Phosphorus (P) doped ZnO thin films have been grown by RF magnetron sputtering under various Ar to O2 gas ratios to investigate the effect of O2 on the donor-acceptor compensation by comprehensive photoconductivity measurements supported by the PL studies. Initial elemental analyses indicate presence of abundant zinc vacancies (VZn) in O-rich ambience. The results predict that P sits in the zinc (Zn) site rather than the oxygen (O) site causing the formation of PZn–2VZn acceptor-like defects, which compensates the donor defects in P doped ZnO films. Photocurrent spectra uniquely reveal presence of more oxygen vacancies (VO) defects states in lower O2 flow, which gets compensated with an increase in the O2 flow. Successive photocurrent transients indicate probable presence of more VO in the films grown with lower O2 flow and more VZn in higher O2 flow. Overall the photosensitivity measurements clearly present that O-rich ambience expedites the formation of acceptor defects which are compensated, thereby lowering the dark current and enhancing the ultraviolet photosensitivity.  相似文献   
7.
8.
Currently, the Electric Power Steering (EPS) system is an essential component of the vehicle because it provides assistive steering torque to the driver. To ensure a faster steering response, the position of the EPS in some vehicles is moved closer to the tire rather than the steering wheel. The steering torque, which is provided by the EPS in the steering system, mainly affects the driver’s feel while steering. Therefore, the driver often feels uncomfortable owing to such positioning of the EPS in the steering system. In particular, the nonlinearity of the Universal Joint (UJ), which is one of parts of the steering system, can be felt at the steering wheel side.In this paper, we proposed an algorithm based on the mathematical model of the steering torque in the steering system to improve the steering feel. The mathematical model is structured using parameters that can be obtained from the information of the steering system. Moreover, the formulation of the steering torque consists of the two parts, namely the deformation part, which describes the propagation inside the steering system, and the friction part that describes the inherent friction in the UJ.Simulation and experiments were conducted to verify the proposed mathematical model with similar conditions to the real tire load during the steering motion. Furthermore, to improve the driver’s feel during steering, a torque compensation algorithm is proposed and verified through experiments.  相似文献   
9.
In this article, adaptive compensation designs are developed for nonlinear systems with uncertainties from the system functions and persistent actuator failures of characterizations that (i) some unknown system inputs are stuck at some unknown fixed or varying values at unknown time instants and (ii) the failure pattern always switches from one to another and the switching does not stop. Such a controlled plant is described by an uncertain time-varying nonlinear system, and some robust adaptive feedback linearization based failure compensation results are studied for closed-loop system stabilization and bounded output tracking for some specific conditions. To improve the tracking performance in the presence of persistent actuator failures, a new adaptive control scheme is developed, using the failure indicator function which contains the failure pattern and failure time in the formulation. Detailed stability and tracking performance are shown. Simulation results are shown to verify the effectiveness of the proposed adaptive actuator failure compensation method.  相似文献   
10.
《Ceramics International》2022,48(15):21856-21867
In this work, ZnO nanowires with high aspect ratio were obtained by fast and simple electrochemical anodization. Morphological, structural and photoelectrochemical characteristics of the synthesized ZnO nanowires were evaluated by using different techniques: field emission scanning electron microscopy, atomic force microscopy, high resolution transmission electron microscopy, Raman spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, UV–VIS spectroscopy, Mott-Schottky analysis and photoelectrochemical impedance spectroscopy. The synthesized ZnO nanowires presented high roughness and high crystallinity. Besides, surface defects were identified in the sample. The value of the donor density (ND) was in the order of 1019 cm?3 in the dark and 1020 cm?3 under illumination. In addition, the ZnO nanowires presented good photosensibility, with a photocurrent density response 85 times higher than a ZnO compact layer, and lower resistance to charge transfer. The charge transfer processes taking place at the ZnO/electrolyte interface were studied, since these processes strongly influence the photoelectrocatalytic efficiency of the material. According to the results, the charge transfer of holes in the synthesized ZnO nanowires occurs indirectly via surface states. In this regard, surface states may be an important feature for photoelectrocatalytic applications since they could provide lower onset voltages and higher anodic current densities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号