首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   3篇
电工技术   2篇
无线电   1篇
一般工业技术   1篇
  2019年   1篇
  2017年   1篇
  2016年   1篇
  2014年   1篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
氮化镓(GaN)作为第三代半导体材料的代表,具有优异的材料物理特性,更加适合于下一代电力电子系统对功率开关器件更大功率、更高频率、更小体积和更恶劣工作温度的要求。为了兼容Si基CMOS工艺流程,以及考虑到大尺寸、低成本等优势,在Si衬底上进行GaN材料的异质外延及器件制备已经成为业界主要技术路线。详细介绍了在6英寸Si衬底上外延生长的AlGaN/GaN HEMT结构功率电子材料,以及基于6英寸CMOS产线制造Si基GaN功率MIS-HEMT和常关型Cascode GaN器件的相关成果。  相似文献   
2.
杨帆  何亮  郑越  沈震  刘扬 《电源学报》2016,14(4):14-20
高性能GaN常关型功率开关器件的实现是目前研究的热点。槽栅结构GaN常关型MOSFET以其栅压摆幅冗余度大、栅极漏电流小等优势受到广泛关注。制备槽栅结构GaN常关型MOSFET需要的刻蚀方法会在栅极沟道引入缺陷,影响器件的稳定性。首先,提出选择区域外延方法制备槽栅结构GaN常关型MOSFET,期望避免刻蚀对栅极沟道的损伤;再通过改进选择区域外延工艺(包括二次生长界面和异质结构界面的分离及抑制背景施主杂质),使得二次生长的异质结构质量达到标准异质结构水平。研究结果表明,选择区域外延方法能够有效保护栅极导通界面,使器件具备优越的阈值电压稳定性;同时也证明了选择区域外延方法制备槽栅结构GaN常关型MOSFET的可行性与优越性。  相似文献   
3.
Jang  Byung Chul  Yang  Sang Yoon  Seong  Hyejeong  Kim  Sung Kyu  Choi  Junhwan  Im  Sung Gap  Choi  Sung-Yool 《Nano Research》2017,10(7):2459-2470
Flexible logic circuits and memory with ultra-low static power consumption are in great demand for battery-powered flexible electronic systems.Here,we show that a flexible nonvolatile logic-in-memory circuit enabling normally-off computing can be implemented using a poly(1,3,5-trivinyl-1,3,5-trimethyl cyclotrisiloxane) (pV3D3)-based memristor array.Although memristive logic-in-memory circuits have been previously reported,the requirements of additional components and the large variation of memristors have limited demonstrations to simple gates within a few operation cycles on rigid substrates only.Using memristor-aided logic (MAGIC) architecture requiring only memristors and pV3D3-memristor with good uniformity on a flexible substrate,for the first time,we experimentally demonstrated our implementation of MAGIC-NOT and-NOR gates during multiple cycles and even under bent conditions.Other functions,such as OR,AND,NAND,and a half adder,are also realized by combinations of NOT and NOR gates within a crossbar array.This research advances the development of novel computing architecture with zero static power consumption for batterypowered flexible electronic systems.  相似文献   
4.
Traditional digital processing approaches are based on semiconductor transistors, which suffer from high power consumption, aggravating with technology node scaling. To solve definitively this problem, a number of emerging non-volatile nanodevices are under intense investigations. Meanwhile, novel computing circuits are invented to dig the full potential of the nanodevices. The combination of non-volatile nanodevices with suitable computing paradigms have many merits compared with the complementary metal-oxide-semiconductor transistor (CMOS) technology based structures, such as zero standby power, ultra-high density, non-volatility, and acceptable access speed. In this paper, we overview and compare the computing paradigms based on the emerging nanodevices towards ultra-low dissipation.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号