首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  完全免费   9篇
  电工技术   16篇
  2022年   6篇
  2021年   5篇
  2020年   2篇
  2019年   3篇
排序方式: 共有16条查询结果,搜索用时 59 毫秒
1.
Robust and adaptive control strategies are needed when robots or automated systems are introduced to unknown and dynamic environments where they are required to cope with disturbances, unmodeled dynamics, and parametric uncertainties. In this paper, we demonstrate the capabilities of a combined adaptive control and iterative learning control (ILC) framework to achieve high‐precision trajectory tracking in the presence of unknown and changing disturbances. The adaptive controller makes the system behave close to a reference model; however, it does not guarantee that perfect trajectory tracking is achieved, while ILC improves trajectory tracking performance based on previous iterations. The combined framework in this paper uses adaptive control as an underlying controller that achieves a robust and repeatable behavior, while the ILC acts as a high‐level adaptation scheme that mainly compensates for systematic tracking errors. We illustrate that this framework enables transfer learning between dynamically different systems, where learned experience of one system can be shown to be beneficial for another different system. Experimental results with two different quadrotors show the superior performance of the combined ‐ILC framework compared with approaches using ILC with an underlying proportional‐derivative controller or proportional‐integral‐derivative controller. Results highlight that our ‐ILC framework can achieve high‐precision trajectory tracking when unknown and changing disturbances are present and can achieve transfer of learned experience between dynamically different systems. Moreover, our approach is able to achieve precise trajectory tracking in the first attempt when the initial input is generated based on the reference model of the adaptive controller.  相似文献
2.
周自强  纪扬  苏烨  蔡钧宇 《中国电力》2019,52(4):104-110
随着电力行业的不断发展,高压电缆的铺排以及地下电缆隧道的建设与维护逐渐成为该领域中的热点问题之一。将迁移学习的核心思想与经典的卷积神经网络(LeNet5)相结合,提出了一种基于迁移学习卷积神经网络的电缆隧道锈蚀识别算法,实现了电缆隧道内部电源箱、风机等设备的锈蚀识别。该算法基于Tensorflow框架,能够有效地解决训练样本不足、训练时间冗长以及识别精度不高的问题。通过引入4种经典的目标识别算法进行对比实验,进一步验证了所提方案在网络训练时间以及识别精确度上的优势,为后续电缆隧道巡检机器人系统的构建提供了坚实的理论基础与实验支撑。  相似文献
3.
针对在使用深度学习对燃气轮机转子故障诊断过程中,因振动信号样本中正常运行数据多、故障数据少而使得模型故障诊断准确率低的问题,提出了一种采用深度迁移学习对燃气轮机转子进行故障诊断的方法。首先,使用典型行业样本数据集预训练第一层宽卷积核深度卷积神经网络(WDCNN)模型,给予模型初始的权重。其次,在源域中,使用某型燃气轮机试车获得的大量正常运行样本更新WDCNN模型的权重;在目标域中,利用源域训练的卷积层提取燃气轮机的正常和故障数据样本特征,然后使用支持向量机(support vector machines, SVM)进行分类识别,从而达到燃气轮机故障识别的目的。试车数据实验结果表明,该方法能够实现96%的识别准确率,验证了将轴承数据集预训练的深度学习模型迁移到燃气轮机转子领域进行故障诊断的可行性。  相似文献
4.
针对电力系统拓扑实时变化导致数据驱动状态估计器不可用的情况,提出一种基于深度迁移学习的数据驱动状态估计方法.将原拓扑海量历史数据训练得到的模型作为基础模型,当新拓扑实时量测数据更新时,加载和保存基础模型中特征提取层的权重和参数,只需要微调模型的全连接层,即可获得适应于新拓扑的神经网络,提高了数据驱动状态估计模型的自适应性和泛化性能.通过对IEEE标准系统和中国某实际省网的算例测试,并将其估计结果与加权最小二乘法和加权最小绝对值法进行比较.结果表明,在考虑拓扑时变性的情况下,该算法与上述2种物理算法相比具有更优的估计性能和估计效率.  相似文献
5.
针对红外图像中变电设备的识别和定位问题,提出了一种基于改进YOLOv3算法的变电设备检测方法.在现场采集的变电设备红外图像集的基础上,首先使用基于Retinex的图像增强算法以及阈值分割等图像处理方法对图像集进行预处理;然后基于变电设备红外图像对YOLOv3算法进行参数优化,并通过迁移学习的策略对改进YOLOv3网络进行训练以解决图像集样本数量较少的问题.实验结果表明,在样本数量较少的情况下,所提方法可以达到满意的检测准确率,并能快速地实现变电设备的识别和定位.  相似文献
6.
强迫振荡扰动源的准确定位是消除强迫振荡、恢复电力系统正常运行的关键。文中提出一种基于平滑伪Wigner-Ville分布(SPWVD)图像和深度迁移学习的强迫振荡扰动源定位方法。首先对强迫振荡信号采用SPWVD方法以图像形式表征全网强迫振荡特征信息,然后通过深度迁移学习将其他领域的图像识别知识迁移到电力系统领域,挖掘振荡图像与扰动源位置之间的联系,在保证训练准确度的同时,提升了训练效率。在WECC 179节点系统中的算例验证了该方法的有效性,并且相比于传统机器学习方法具有准确率高的优势。此外还考虑振荡数据中的噪声、录波起始时间以及数据长度验证了所提方法的准确性和抗噪性,并在由负荷引发的强迫振荡和系统拓扑发生变化的情况下,验证了方法的有效性。  相似文献
7.
为提高输电线路故障诊断模型的可迁移性,根据迁移学习理论将输电线路分为源线路和目标线路,提出一种基于深度-迁移学习的输电线路故障类型识别方法。通过组合不同故障条件,生成输电线路故障期间的时序数据,并通过对数据的预处理,得到面向卷积神经网络的输入数据样本;利用源域数据对初始卷积神经网络进行预训练,获取适用于源线路故障类型识别的预训练模型;采用最大均值差异法对源线路和目标线路进行相似性检验,筛选出待迁移的源域预训练模型;利用目标域数据对预训练模型进行微调迁移训练,获取最终的目标域故障诊断模型。仿真结果表明,利用源域数据量5 %的目标域数据对预训练模型进行微调迁移训练,得到的目标域模型对目标线路故障诊断的准确率达99 %以上。  相似文献
8.
针对传统小电流接地系统故障选线方法准确率低、鲁棒性弱的问题,文章提出一种基于改进GoogLeNet的小电流接地选线方法。首先,利用小波变换将零序电流信号映射为二维时频图,制备小电流接地数据集;然后,在GoogLeNet网络基础上通过迁移学习共享已训练模型权重来提高原网络检测精度;其次,在原网络全连接层前通过引入Batch-Normalization模块加快网络收敛速度,最终构建了GoogLeNet-69小电流接地故障选线网络;最后,为了验证所提出算法的优势,在未考虑噪声情况和考虑噪声情况下,将本文算法与4种经典选线方法进行比较。实验结果表明,相比于对比算法,本文算法检测精度最高,当信噪比为15dB时,所提出算法的选线精度可以达到96.3%,具有较强的抗噪能力。  相似文献
9.
由于电力系统拓扑结构复杂多变,基于数据驱动的静态电压稳定评估通常存在模型泛化能力不足的问题。针对该问题,文中提出了一种基于迁移学习的智能静态电压稳定评估方案。基于最大相关最小冗余(Maximal Relevance Minimal Redundancy,MRMR)准则和shapley值构建S-MRMR特征选择框架,对离线生成的数据集进行数据降维;基于梯度提升分段线性回归树(Gradient Boosting With Piecewise Linear Regression Trees,GBDT-PL)算法构建静态电压稳定评估模型,提取电力系统运行特征与静态电压稳定指标间的映射关系;利用迁移学习对GBDT-PL模型进行实时更新,提高模型的泛化能力。在由电力系统仿真软件PSS/E提供的23节点系统和1648节点系统上的仿真结果表明,文中所提方案对电力系统拓扑结构变化具有较强的鲁棒性,能够满足在线电压稳定评估的要求,为数据驱动方法实际应用于静态电压稳定评估提供了有益的参考。  相似文献
10.
目前电力人工智能技术在电力各业务领域都有一定的应用成果,但大多在业务应用层面,缺少对人工智能技术系统级的解决方案。文中对人工智能在电力行业应用落地存在的问题进行探讨,给出了解决办法。针对样本收集面临数据分散、收集困难的情况,一方面建设统一平台进行样本收集,使得各地样本收集快速、简便;另一方面引入数据回流思想,将推理侧检测的数据传回样本收集平台,实现样本筛选、收集流程自动化。对于数据标注工作量大的问题,提出了主动交互式标注技术,实现样本数据智能标注。对于模型训练样本量少的问题,引入迁移学习的思想,采用预训练模型,在不影响模型效果的同时,还减少模型训练时间。对于模型迁移至边端设备,因边端设备架构、模型框架造成模型移植性差的问题,基于开放神经网络交换(ONNX)实现不同目标架构的模型转换,解决硬件兼容的问题,提升模型的复用性。  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号