首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   161007篇
  免费   19450篇
  国内免费   6767篇
电工技术   52725篇
技术理论   3篇
综合类   12701篇
化学工业   16775篇
金属工艺   7373篇
机械仪表   6684篇
建筑科学   11915篇
矿业工程   4020篇
能源动力   16683篇
轻工业   4943篇
水利工程   5795篇
石油天然气   4003篇
武器工业   982篇
无线电   14412篇
一般工业技术   9192篇
冶金工业   6061篇
原子能技术   3792篇
自动化技术   9165篇
  2024年   316篇
  2023年   2024篇
  2022年   4140篇
  2021年   4871篇
  2020年   5315篇
  2019年   4201篇
  2018年   3885篇
  2017年   5121篇
  2016年   5806篇
  2015年   6333篇
  2014年   11272篇
  2013年   9731篇
  2012年   12750篇
  2011年   13536篇
  2010年   9949篇
  2009年   10124篇
  2008年   9200篇
  2007年   11518篇
  2006年   10207篇
  2005年   8399篇
  2004年   7191篇
  2003年   6044篇
  2002年   4999篇
  2001年   4165篇
  2000年   3387篇
  1999年   2570篇
  1998年   1809篇
  1997年   1479篇
  1996年   1353篇
  1995年   1158篇
  1994年   977篇
  1993年   698篇
  1992年   614篇
  1991年   378篇
  1990年   299篇
  1989年   299篇
  1988年   189篇
  1987年   140篇
  1986年   104篇
  1985年   94篇
  1984年   136篇
  1983年   113篇
  1982年   107篇
  1981年   40篇
  1980年   26篇
  1979年   26篇
  1978年   16篇
  1977年   11篇
  1959年   40篇
  1951年   24篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
The development of efficient filters is an essential part of industrial machinery design, specifically to increase the lifespan of a machine. In the filter chamber design considered in this study, the magnetic material is placed along the horizontal surface of the filter chamber. The inside of the filter chamber is layered with a porous material to restrict the outflow of unwanted particles. This study aims to investigate the flow, pressure, and heat distribution in a dilating or contracting filter chamber with two outlets driven by injection through a permeable surface. The proposed model of the fluid dynamics within the filter chamber follows the conservation equations in the form of partial differential equations. The model equations are further reduced to a steady case through Lie's symmetry group of transformation. They are then solved using a multivariate spectral-based quasilinearization method on the Chebyshev–Gauss–Lobatto nodes. Insights and analyses of the thermophysical parameters that drive optimal outflow during the filtration process are provided through the graphs of the numerical solutions of the differential equations. We find, among other results, that expansion of the filter chamber leads to an overall decrease in internal pressure and an increase in heat distribution inside the filter chamber. The results also show that shrinking the filter chamber increases the internal momentum inside the filter, which leads to more outflow of filtrates.  相似文献   
2.
In the present paper, therapeutic treatment of infected tumorous cells has been studied through mathematical modeling and simulation of heat transfer in tissues by using a nonlinear dual-phase lag bioheat transfer model with Dirichlet boundary condition. The components of volumetric heat source in this model such as blood perfusion and metabolism are assumed experimentally validated temperature-dependent function, which gives more accurate temperature distribution in tissues through this model. We have used the finite difference and RK (4, 5) techniques of numerical methods to solve the proposed problem and obtained the exact solution in a particular case. After comparison, we got a good agreement between them. We have used dimensionless quantities throughout this paper. The effect of relaxation and thermalization time with respect to dimensionless temperature distribution has been analyzed in the treatment process.  相似文献   
3.
We considered the magnetohydrodynamic (MHD) free convective flow of an incompressible electrically conducting viscous fluid past an infinite vertical permeable porous plate with a uniform transverse magnetic field, heat source and chemical reaction in a rotating frame taking Hall current effects into account. The momentum equations for the fluid flow during absorbent medium are controlled by the Brinkman model. Through the undisturbed state, both the plate and fluid are in a rigid body rotation by the uniform angular velocity perpendicular to an infinite vertical plate. The perpendicular surface is subject to the homogeneous invariable suction at a right angle to it and the heat on the surface varies about a non-zero unvarying average whereas the warmth of complimentary flow is invariable. The systematic solutions of the velocity, temperature, and concentration distributions are acquired systematically by utilizing the perturbation method. The velocity expressions consist of steady-state and fluctuating situations. It is revealed that the steady part of the velocity field has a three-layer characteristic while the oscillatory part of the fluid field exhibits a multi-layer characteristic. The influence of various governing flow parameters on the velocity, temperature, and concentration are analyzed graphically. We also discuss computational results for the skin friction, Nusselt number, and Sherwood number in the tabular forms.  相似文献   
4.
A double pyrovanadate CaMgV2O7 sample was synthesized via a facile solid-state route under an air atmosphere. The nonequilibrium formation pathways of the CaMgV2O7 were investigated via powder X-ray diffraction. A multistep reactions path (metavanadates–pyrovanadates–double pyrovanadate CaMgV2O7) was proposed to describe the formation of the CaMgV2O7 considering the thermodynamic and kinetic factors. The cell unit parameters of the CaMgV2O7 sample indicated the crystallization according to a monoclinic system with space group P12/c1(14), and the lattice parameters of a = 6.756 Å, b = 14.495 Å, c = 11.253 Å, β = 99.12, and V = 108.806 Å3. X-ray photoelectron spectroscopy also confirmed the +5 oxidation state vanadium in CaMgV2O7. The endothermic effects at 1033 and 1143 K were related to the incongruent melting and liquidus temperatures of CaMgV2O7, respectively. The comprehensive thermodynamic properties of CaMgV2O7 were established in both low- and high-temperature regions, utilizing a physical property measurement system and multi-high-temperature calorimetry (96 lines). The heat capacity (200 J mol K−1) and entropy (198 J mol K−1) at 298.15 K were computed based on the low-temperature heat capacity values, and the enthalpy of formation at 298.15 K was also estimated. The fitted high-temperature capacity can be used to obtain the changes in the enthalpy, entropy, and Gibbs free energy. This study is part of building a reliable thermodynamic database of the CaO–MgO–V2O5 system.  相似文献   
5.
朱佩佩 《电讯技术》2022,62(3):342-347
电力线是一类形状细长、特征稀疏、随着视角的变化容易混淆在大量背景信息中的特殊障碍物,常规电力线检测识别算法得到的目标框对电力线所在位置的估计不够准确。为此,提出了一种相对角度估计方法,基于常规电力线目标检测与识别算法,并结合电力线相对角度估计,从而提高电力线的检测识别过程中所在位置的精度。相比电力线绝对角度回归的方法,提出的相对角度估计方法容易训练易收敛,计算量小,适用于实时性要求较高的应用场合。  相似文献   
6.
The present research work concentrates on viscous dissipation, Dufour, and heat source on an unsteady magnetohydrodynamics natural convective flow of a viscous, incompressible, and electrically conducting fluid past an exponentially accelerated infinite vertical plate in the existence of a strong magnetic field. The presence of the Hall current induces a secondary flow in the problem. The distinguishing features of viscous dissipation and heat flux produced due to gradient of concentration included in the model along with heat source as they are known to arise in thermal-magnetic polymeric processing. The flow equations are discretized implicitly using the finite difference method and solved using MATLAB fsolve routine. Numerical values of the primary and secondary velocities, temperature, concentration, skin friction, Nusselt number, and Sherwood number are illustrated and presented via graphs and tables for various pertinent parametric values. The Dufour effect was observed to strengthen the velocity and temperature profile in the flow domain. In contrast, due to the impact of viscous dissipation, the local Nusselt number reduces. The study also reveals that the inclusion of the chemical reaction term augments the mass transfer rate and diminishes the heat transfer rate at the plate.  相似文献   
7.
Zirconolite-rich full ceramic wasteforms designed to immobilize Pu-bearing wastes were produced via hot isostatic pressing (HIP) using stainless steel (SS) and nickel (Ni) HIP canisters. A detailed profiling of the elemental compositions of the major and minor phases over the canister–wasteform interaction zone was performed using scanning electron microscopy combined with energy-dispersive X-ray spectroscopy (SEM-EDS) characterization. Bulk sample analyses from regions near the center of the HIP canister were also conducted for both samples using X-ray diffraction and SEM-EDS. The sample with the Ni HIP canister showed almost no interaction zone with only minor diffusion of Ni from the inner wall of the canister into the near-surface region of the wasteform. The sample with the SS HIP canister showed ∼100–120 μm of interaction zone dominated by high-temperature Cr diffusion from canister materials to the wasteform with the Cr predominantly incorporated into the durable zirconolite phase. We also examined, for the first time, changes to the HIP canister wall thickness caused by HIPing and demonstrated that no canister wall thinning occurred. Instead, in the areas examined, the canister wall thickness was observed to increase (up to ∼20%) due to the compression occurring during the HIP cycle. Further, only sparse formation of (Cr, Mn)-rich oxide particles were noted within the HIP canister inner wall area immediately adjacent to the ceramic material, with no evidence for reverse diffusion of ceramic materials. Though the HIP canister–wasteform interaction extends to ∼120 μm when using an SS HIP canister for the system investigated, this translates to <<1 vol.% for an industrial scale HIPed wasteform. Importantly, the HIP canister–wasteform interactions did not produce any obviously less durable phases in the wasteform or had any detrimental impact on the HIP canister properties.  相似文献   
8.
《Ceramics International》2022,48(18):26351-26360
Foams glass were obtained from solid waste of flat glass and exhausted alkaline batteries. The physical, chemical, crystalline and morphological properties of the samples were obtained using the Archimedes principle, X-ray diffractometry (XRD), scanning electron microscopy (SEM). The results revealed glass foams with apparent porosities in the range of 55–64% and apparent densities in the range of 0.40–0.79 g cm?3. The manganese oxide and graphite contained within the cathode of alkaline batteries acted as both oxidizing agents and as foaming agents. The zinc contained in the anode acted as a pore stabilizing agent and the zinc oxide as a semiconductor material. The foam glass that was composed of flat glass with an anode of Zn and ZnO, and a cathode of Mn2O3 and Mn3O4 (named An8), showed the greatest potential for heterogeneous photocatalysis, with a maximum efficiency of 95.9% after 3 h of treatment of solution containing dye. These results suggest the feasibility of producing foam glass from waste, as well as its potential application in photocatalytic systems, such as in the low-cost treatment of water.  相似文献   
9.
Food- and waterborne viruses, such as human norovirus, hepatitis A virus, hepatitis E virus, rotaviruses, astroviruses, adenoviruses, and enteroviruses, are major contributors to all foodborne illnesses. Their small size, structure, and ability to clump and attach to inanimate surfaces make viruses challenging to reduce or eliminate, especially in the presence of inorganic or organic soils. Besides traditional wet and dry methods of disinfection using chemicals and heat, emerging physical nonthermal decontamination techniques (irradiation, ultraviolet, pulsed light, high hydrostatic pressure, cold atmospheric plasma, and pulsed electric field), novel virucidal surfaces, and bioactive compounds are examined for their potential to inactivate viruses on the surfaces of foods or food contact surfaces (tools, equipment, hands, etc.). Every disinfection technique is discussed based on its efficiency against viruses, specific advantages and disadvantages, and limitations. Structure, genomic organization, and molecular biology of different virus strains are reviewed, as they are key in determining these techniques effectiveness in controlling all or specific foodborne viruses. Selecting suitable viral decontamination techniques requires that their antiviral mechanism of action and ability to reduce virus infectivity must be taken into consideration. Furthermore, details about critical treatments parameters essential to control foodborne viruses in a food production environment are discussed, as they are also determinative in defining best disinfection and hygiene practices preventing viral infection after consuming a food product.  相似文献   
10.
We propose a self-sustaining power supply system consisting of a “Hybrid Energy Storage System (HESS)” and renewable energy sources to ensure a stable supply of high-quality power in remote islands. The configuration of the self-sustaining power supply system that can utilize renewable energy sources effectively on remote islands where the installation area is limited is investigated. It is found that it is important to select renewable energy sources whose output power curve is close to the load curve to improve the efficiency of the system. The operation methods that can increase the cost-effectiveness of the self-sustaining power supply system are also investigated. It is clarified that it is important for increasing the cost effectiveness of the self-sustaining power supply system to operate the HESS with a smaller capacity of its components by setting upper limits on the output power of the renewable energy sources and cutting the infrequent generated power.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号