首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10539篇
  免费   1474篇
  国内免费   812篇
电工技术   1604篇
综合类   852篇
化学工业   680篇
金属工艺   879篇
机械仪表   638篇
建筑科学   582篇
矿业工程   225篇
能源动力   338篇
轻工业   196篇
水利工程   195篇
石油天然气   200篇
武器工业   144篇
无线电   2949篇
一般工业技术   1358篇
冶金工业   551篇
原子能技术   152篇
自动化技术   1282篇
  2024年   29篇
  2023年   186篇
  2022年   246篇
  2021年   329篇
  2020年   445篇
  2019年   414篇
  2018年   344篇
  2017年   468篇
  2016年   476篇
  2015年   498篇
  2014年   670篇
  2013年   716篇
  2012年   844篇
  2011年   897篇
  2010年   607篇
  2009年   661篇
  2008年   574篇
  2007年   744篇
  2006年   645篇
  2005年   507篇
  2004年   445篇
  2003年   363篇
  2002年   303篇
  2001年   277篇
  2000年   214篇
  1999年   191篇
  1998年   129篇
  1997年   103篇
  1996年   100篇
  1995年   85篇
  1994年   73篇
  1993年   36篇
  1992年   43篇
  1991年   34篇
  1990年   31篇
  1989年   24篇
  1988年   21篇
  1987年   11篇
  1986年   9篇
  1985年   5篇
  1984年   3篇
  1983年   2篇
  1982年   5篇
  1981年   3篇
  1980年   3篇
  1979年   5篇
  1978年   2篇
  1976年   2篇
  1966年   1篇
  1964年   1篇
排序方式: 共有10000条查询结果,搜索用时 218 毫秒
1.
ABSTRACT

The hydrophobic polyether sulfone membranes were prepared by the sol-gel method to be applied in an air gap membrane distillation setup for desalination. The surface modifications were carried out using Trimethylsilyl chloride (TMSCl) and Methyltrimethoxysilane (MTMS) solutions. The membranes were characterized using Attenuated Total Reflection Infrared (ATR-IR) spectroscopy, Scanning Electron Microscopy (SEM), and Optical Contact Angle (OCA) methods. The effects of membrane preparation as well as operating conditions such as temperature difference, salt concentration, feed rotation speed, and cold-side temperature on membrane performance were investigated using central composite design method. It was found that feed temperature has the largest effect among the parameters on the permeation flux. The flow rate and salt rejection of the membrane in the optimum conditions were 4.47 Kg m?2 h?1 and 99.37%, respectively.  相似文献   
2.
吕薇  姜根山  刘月超  张伟 《声学技术》2022,41(6):789-795
为了研究温度分布对于管阵列结构中的声透射特性的影响,以核电站的实际工况为背景,构建了不同的温度场以及周期性变化的非均匀温度场,利用有限元方法进行数值模拟。结果表明:(1)温度分布会改变管阵列声透射频谱的“禁带”宽度以及中心频率位置。在同一介质中,温度变化对频率较高位置的影响大于频率较低的位置。(2)在同样为10℃的温度差下,当水的平均声速为1 653 m·s-1、饱和水蒸气的平均声速为522.5 m·s-1时,介质为水时的禁带宽度及中心频率位置变化较大,即声速大的介质的频谱对于温度的变化更敏感。(3)当温度差在10℃以内,在周期性变化的非均匀温度场和与均匀温度场中管阵列声透射特性在第一中心频率23 996.1 Hz之前,两频谱差别很小,在第一禁带之后会出现明显区别。该研究成果对完善核电站应用的声学检测提供了理论基础。  相似文献   
3.
The dependence of the maximum and minimum wet thicknesses on the coating gap is derived for the slot-die coating process, under different slot-die configurations. Analytical expressions for the wet thickness and its derivative with respect to the coating gap are obtained using a simple flow model. The results indicate that, as expected, the minimum wet thickness increases linearly with the coating gap; however, the maximum wet thickness demonstrates a counterintuitive trend of decreasing as the coating gap increases, when a specific slot-die configuration is assumed. Moreover, the results are also validated by numerically solving the complete two-dimensional (2D) Navier–Stokes equation.  相似文献   
4.
GeTe is a promising candidate for the fabrication of high-temperature segments for p-type thermoelectric (TE) legs. The main restriction for the widespread use of this material in TE devices is high carrier concentration (up to ∼ 1021 cm−3), which causes the low Seebeck coefficient and high electronic component of thermal conductivity. In this work, the band structure diagram and phase equilibria data have been effectively used to attune the carrier concentration and to obtain the high TE performance. The Ge1−xBixTe (x = 0.04) material prepared by the Spark plasma sintering (SPS) technique demonstrates a high power factor accompanied by moderate thermal conductivity. As a result, a significantly higher dimensionless TE figure of merit ZT = 2.0 has been obtained at ∼ 800 K. Moreover, we are the first to propose that application of the developed Ge1−xBixTe (x = 0.04) material in the TE unicouple should be accompanied by SnTe and CoGe2 transition layers. Only such a unique solution for the TE unicouple makes it possible to prevent the negative effects of high contact resistance and chemical diffusion between the segments at high temperatures.  相似文献   
5.
This paper reports an investigation on the structure-properties correlation of trivalent metal oxide (Al2O3)-doped V2O5 ceramics synthesized by the melt-quench technique. XRD patterns confirmed a single orthorhombic V2O5 phase formation with increasing strain on the doping of Al2O3 in place of V2O5 in the samples estimated by Williamson-Hall analysis. FTIR and Raman investigations revealed a structural change as [VO5] polyhedra converts into [VO4] polyhedra on the doping of Al2O3 into V2O5. The optical band gap was found in a wide semiconductor range as confirmed by UV–visible spectroscopy analysis. The thermal and conductivity behavior of the prepared samples were studied using thermal gravimetric analysis (TGA) and impedance analyzer, respectively. All the prepared ceramics exhibit good DC conductivity (0.22–0.36 Sm-1) at 400 ?C. These materials can be considered for intermediate temperature solid oxide fuel cell (IT-SOFC)/battery applications due to their good conductivity and good thermal stability.  相似文献   
6.
Understanding the impact of bismuth cations on the optical properties of borosilicate glass is significant for manipulating borate glass applications. In this paper, the influence of bismuth cations on both structural and optical properties of borosilicate glass doped with NiO was investigated. Different glass samples, containing different amounts of Bi2O3 and a constant amount of NiO, were prepared and studied. Infrared (IR) analysis was carried out to study the internal structure within the investigated glass samples. Optical absorption studies were performed to investigate the impact of Bi2O3 content on optical properties of the BiBaNiB-glasses. Astonishingly, with Bi2O3 addition, an absorption band at 380 nm has appeared. Moreover, this band is overlapped with the Urbach edge; which regularly produced an artificial edge-like feature at ~450 nm. A detailed deconvolution protocol has been implemented for an appropriate understanding of these spectra and unraveling the hidden Urbach edge. Optical band gap energy, linear and nonlinear refractive index for each BiBaNiB sample were calculated. Furthermore, the metallization criterion was calculated to examine the metallic or insulating nature of the BiBaNiB-glasses. The values of the nonlinear third-order susceptibility and nonlinear refractive index were increased with Bi2O3 doping. The BiBaNiB-glasses exhibited outstanding stability and optical band gap than the pristine glass sample, which makes it possible for practical applications.  相似文献   
7.
Fe2O3 with high theoretical capacity, low cost, and environmental friendliness has been attracted great attention in lithium-ion batteries (LIBs), which however is limited by low rate capability and fast capacity fading owing to low electronic conductivity, self-aggregation, and sever volume expansion. CNTs with excellent conductivity and unique 3D interconnected network are ideal matrices for composite electrochemical materials, but it is difficult to meet the demand of high capacity. Here, uniform α-Fe2O3 nanoparticles with narrow gap (~1.4 nm) were immobilized on CNTs through N-doped carbon (α-Fe2O3/CNTs-NC) that can address these issues. As an advanced LIBs anode, the electrode displays unprecedented specific capacity (1173 mAh/g at 0.2 A/g) and outstanding rate behavior (716.4 mAh/g at 5.0 A/g after 1200 cycles), which are even superior to the theoretical capacity (1007 mAh/g) and the performance of most reported Fe2O3-based anodes. Homogeneous nano-sized α-Fe2O3 with a narrow gap highly shortens the diffusion path for Li+ transport, exposes quite sufficient active sites, and prevents the volume change. Moreover, the 3D backbone of CNTs with a more homogeneously distributed electric field can enhance conductivity, and tightly contact with α-Fe2O3 by NC, then obtain robust structural stability, which boosts LIBs in storage capacity, rate capability, and cycling stability.  相似文献   
8.
SiCNO ceramic is prepared by pyrolyzing modified polysilazane. Its microstructure feature, dielectric properties and charge transition mechanisms are studied based on the analysis of effects of pyrolysis temperature on AC electrical performance. The Tauc band and the energy states density at Fermi level are studied by ultraviolet absorption and dielectric tests. The charge transition in the silicon-based matrix was analyzed according to Jonscher's dielectric relaxation theory. Results show that SiCNO ceramic obtained at 1000–1300?°C is amorphous with chemical stability. Three types of charge transition, that is, excitation from deep traps into the delocalized bands and the corresponding reverse capture processes, hopping near the Fermi level, and localized hopping of an electron in a potential double well, are enhanced as annealing temperature increases, which occur within energy band of Si-based matrix.  相似文献   
9.
Bromine-based flow batteries (Br-FBs) are considered one of the most promising energy storage systems due to their features of high energy density and low cost. However, they generally suffer from uncontrolled diffusion of corrosive bromine particularly at high temperatures. That is because the interaction between polybromide anions and the commonly used complexing agent (N–methyl–N–ethyl–pyrrolidinium bromide [MEP]) decreases with increasing temperatures, which causes serious self-discharge and capacity fade. Herein, a novel bromine complexing agent, 1–ethyl–2–methyl–pyridinium bromide (BCA), is introduced in Br-FBs to solve the above problems. It is proven that BCA can combine with polybromide anions very well even at a high temperature of 60 °C. Moreover, the BCA contributes to decreasing the electrochemical polarization of Br/Br2 couple, which in turn improves their power density. As a result, a zinc–bromine flow battery with BCA as the complexing agent can achieve a high energy efficiency of 84% at 40 mA cm−2, even at high temperature of 60 °C and it can stably run for more than 400 cycles without obvious performance decay. This paper provides an effective complexing agent to enable a wide temperature range Br-FB.  相似文献   
10.
Connexin43 (Cx43), the main gap junction and hemichannel forming protein in the urinary bladder, participates in the regulation of bladder motor and sensory functions and has been reported as an important modulator of day–night variations in functional bladder capacity. However, because Cx43 is expressed throughout the bladder, the actual role played by the detrusor and the urothelial Cx43 is still unknown. For this purpose, we generated urothelium-specific Cx43 knockout (uCx43KO) mice using Cre-LoxP system. We evaluated the day–night micturition pattern and the urothelial Cx43 hemichannel function of the uCx43KO mice by measuring luminal ATP release after bladder distention. In wild-type (WT) mice, distention-induced ATP release was elevated, and functional bladder capacity was decreased in the animals’ active phase (nighttime) when Cx43 expression was also high compared to levels measured in the sleep phase (daytime). These day–night differences in urothelial ATP release and functional bladder capacity were attenuated in uCx43KO mice that, in the active phase, displayed lower ATP release and higher functional bladder capacity than WT mice. These findings indicate that urothelial Cx43 mediated ATP signaling and coordination of urothelial activity are essential for proper perception and regulation of responses to bladder distension in the animals’ awake, active phase.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号