首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   97350篇
  免费   8170篇
  国内免费   4335篇
电工技术   6012篇
技术理论   8篇
综合类   7257篇
化学工业   15748篇
金属工艺   5266篇
机械仪表   6119篇
建筑科学   7840篇
矿业工程   2749篇
能源动力   2742篇
轻工业   8078篇
水利工程   1906篇
石油天然气   5616篇
武器工业   914篇
无线电   10671篇
一般工业技术   11060篇
冶金工业   4058篇
原子能技术   1096篇
自动化技术   12715篇
  2024年   165篇
  2023年   1590篇
  2022年   2451篇
  2021年   3788篇
  2020年   3113篇
  2019年   2374篇
  2018年   2684篇
  2017年   2993篇
  2016年   2486篇
  2015年   3694篇
  2014年   4839篇
  2013年   5744篇
  2012年   6552篇
  2011年   7261篇
  2010年   6374篇
  2009年   6077篇
  2008年   6037篇
  2007年   5567篇
  2006年   5540篇
  2005年   4674篇
  2004年   3300篇
  2003年   2757篇
  2002年   2687篇
  2001年   2284篇
  2000年   2117篇
  1999年   2350篇
  1998年   1947篇
  1997年   1670篇
  1996年   1482篇
  1995年   1262篇
  1994年   981篇
  1993年   715篇
  1992年   618篇
  1991年   415篇
  1990年   315篇
  1989年   255篇
  1988年   194篇
  1987年   110篇
  1986年   109篇
  1985年   58篇
  1984年   46篇
  1983年   34篇
  1982年   38篇
  1981年   26篇
  1980年   30篇
  1979年   13篇
  1976年   7篇
  1975年   4篇
  1951年   3篇
  1940年   3篇
排序方式: 共有10000条查询结果,搜索用时 223 毫秒
1.
Microbiologically influenced corrosion induced by bacteria has been studied for many years. Corrosion is known to be sensitive to the presence of microalgae, such as Phaeodactylum tricornutum. However, the life activity of P. tricornutum that influences the general and localized corrosion of carbon steel is not fully understood. The current study uses a combination of immersion tests and electrochemical experiments with a detailed surface characterization to reveal the naturally formed corrosion products with/without the presence of P. tricornutum. The results show that samples suffer from pitting corrosion and the averaged pit depths are approximately 15 μm under a light–dark cycle condition or a 24-h constant light condition. Meanwhile, the corrosion products are mainly comprised of γ-FeOOH and Fe3O4 in a constant light condition. However, γ-FeOOH, Fe3O4, and FeCO3 are found in a light–dark cycle. This study proposes the fundamental mechanisms of the effect of P. tricornutum life activities on the corrosion performance of Q235 carbon steel, to fulfill the knowledge gaps of the presence of microalgae inducing the general and pitting corrosion of carbon steel.  相似文献   
2.
Zhao  Kui  He  Fangmin  Meng  Jin  Wu  Hao  Zhang  Lei 《Wireless Networks》2021,27(3):1671-1681
Wireless Networks - In such mobile platforms as ships and aircraft, the detection and reconnaissance devices are near to the communication facilities. When working at the same time, they will...  相似文献   
3.
An easy albeit quite effective deionization suspension treatment was adopted to alleviate the detrimental effects related to the hydrolysis of Y2O3 in an aqueous medium. Fabrication of highly transparent Y2O3 ceramics with a fine grain size via air pre-sintering and post–hot isostatic pressing (HIP) treatment without using any sintering additive was achieved using the treated suspensions. The hydrolysis issue of Y2O3 powder in an aqueous medium was effectively alleviated by using deionization treatment, and a well-dispersed suspension with a low concentration of dissolved Y3+ species was obtained. The dispersed suspensions were consolidated by the centrifugal casting method, and the green bodies derived from the suspension of 35.0 vol% solid loading showed an improved homogeneity with a relative density of 52.1%. Fully dense Y2O3 transparent ceramic with high transparency was obtained by pre-sintering consolidated green compacts at a low temperature of 1400°C for 16 h in air followed by a post-HIP treatment at 1550°C for 2 h under 200 MPa pressure. The sample had a fine average grain size of 690 nm. The in-line transmittance of the sample reached 83.3% and 81.8% at 1100 nm and 800 nm, respectively, very close to the theoretical values of Y2O3.  相似文献   
4.
In this work, we developed a novel system of isovalent Zr4+ and donor Nb5+ co-doped CaCu3Ti4O12 (CCTO) ceramics to enhance dielectric response. The influences of Zr4+ and Nb5+ co-substituting on the colossal dielectric response and relaxation behavior of the CCTO ceramics fabricated by a conventional solid-phase synthesis method were investigated methodically. Co-doping of Zr4+ and Nb5+ ions leads to a significant reduction in grain size for the CCTO ceramics sintered at 1060 °C for 10 h. XRD and Raman results of the CaCu3Ti3.8-xZrxNb0.2O12 (CCTZNO) ceramics show a cubic perovskite structure with space group Im-3. The first principle calculation result exhibits a better thermodynamic stability of the CCTO structure co-doped with Zr4+ and Nb5+ ions than that of single-doped with Zr4+ or Nb5+ ion. Interestingly, the CCTZNO ceramics exhibit greatly improved dielectric constant (~105) at a frequency range of 102–105 Hz and at a temperature range of 20–210 °C, indicating a giant dielectric response within broader frequency and temperature ranges. The dielectric properties of CCTZNO ceramics were analyzed from the viewpoints of defect-dipole effect and internal barrier layer capacitance (IBLC) model. Accordingly, the immensely enhanced dielectric response is primarily ascribed to the complex defect dipoles associated with oxygen vacancies by co-doping Zr4+ and Nb5+ ions into CCTO structure. In addition, the obvious dielectric relaxation behavior has been found in CCTZNO ceramics, and the relaxation process in middle frequency regions is attributed to the grain boundary response confirmed by complex impedance spectroscopy and electric modulus.  相似文献   
5.
A numerical model is developed for surface crack propagation in brittle ceramic coatings, aiming at the intrinsic failure of rare-earth silicate environmental barrier coating systems (EBCs) under combustion conditions in advanced gas turbines. The main features of progressive degradation of EBCs in such conditions are captured, including selective silica vaporization in the top coat due to exposure to water vapor, diffusion path-dependent bond coat oxidation, as well as crack propagation during cyclic thermal loading. In light of these features, user-defined subroutines are implemented in finite element analysis, where surface crack growth is simulated by node separation. Numerical results are validated by existing experimental data, in terms of monosilicate layer thickening, thermal oxide growth, and fracture behaviors. The experimentally observed quasi-linear oxidation in the early stage is also elucidated. Furthermore, it is suggested that surface crack undergoes rapid propagation in the late stage of extended thermal cycling in water vapor and leads to catastrophic failure, driven by both thermal mismatch and oxide growth stresses. The latter is identified as the dominant mechanism of penetration. Based on detailed analyses of failure mechanisms, the optimization strategy of EBCs composition is proposed, balancing the trade-off between mechanical compliance and erosion resistance.  相似文献   
6.
Carbon black (CB) filled elastomers are structurally complex materials that offer unique properties at different length scales. They have tremendous potential applications in a number of fields including the automotive and aerospace industries and for designing innovative smart materials such as artificial muscles but their applications remain limited primarily due to inadequate understanding of their unique mechanical properties. Here, using the Berkovich technique to probe the surface mechanical properties at different scales the nanoindentation response of a series of composites made by homogeneously dispersed CB nanoparticles inside a semicrystalline copolymer matrix has been explored. While the measured loading part of the force–displacement curves is well described by Meyer's empirical power relation, the inverted methodology (IM) approach to deal with the unloading part has been considered and its outcome has been compared with that obtained from the standard Oliver–Pharr's method. The results were consistent with the observed increase of hardness when the applied displacement decreases for all composite samples over a large range of CB volume fraction. Zhang and Xu's model is demonstrated to produce experimentally consistent explanation of this indentation size effect. X-ray photoelectron spectroscopy (XPS) spectra also show composition gradients with depth up to 100 nm. Furthermore, the effect of CB content, surface features, and length scale-dependent deformation on the hardness–displacement behavior have been considered. These findings highlight the possibility of attaining a diverse set of mechanical properties by a better understanding of the nanoindentation response of CB filled elastomers which can be useful for material selection and design improvements in a number of practical applications.  相似文献   
7.
Sensitivity and multi-directional motivation are major two factors for developing optimized humidity-response materials, which are promising for sensing, energy production, etc. Organic functional groups are commonly used as the water sensitive units through hydrogen bond interactions with water molecules in actuators. The multi-coordination ability of inorganic ions implies that the inorganic ionic compounds are potentially superior water sensitive units. However, the particle forms of inorganic ionic compounds produced by classical nucleation limit the number of exposed ions to interact with water. Recent progress on the inorganic ionic oligomers has broken through the limitation of classical nucleation, and realized the molecular-scaled incorporation of inorganic ionic compounds into an organic matrix. Here, the incorporation of hydrophilic calcium carbonate ionic oligomers into hydrophobic poly(vinylidene fluoride) (PVDF) is demonstrated. The ultra-small calcium carbonate oligomers within a PVDF film endow it with an ultra-sensitive, reversible, and bidirectional response. The motivation ability is superior to other bidirectional humidity-actuators at present, which realizes self-motivation on an ice surface, converting the chemical potential energy of the humidity gradient from ice to kinetic energy.  相似文献   
8.
自然通风广泛存在于城市之中,了解城市自然通风建筑室内环境质量现状及存在的问题,是改善城市建筑室内环境质量的基础. 通过文献整理,首先研究城市街道峡谷中单侧自然通风的驱动因素,其次从建筑几何特征、通风能力、污染率、颗粒物浓度以及街谷设施等方面综述单侧自然通风的相关研究,最后提出建议. 研究表明,合理的展弦比、更好的城市布局以及精心的街谷设施设计能够最大限度地利用单侧自然通风,提升城市街道峡谷的室内环境品质.  相似文献   
9.
对电子文件完整性检查的方法进行了研究.电子文件完整性检查主要是关注某个文件是否被更改.利用信息摘要函数强有力的加密机制,识别文件发生的微小变化,只要是入侵者成功的攻击导致文件任何改变,都能被电子文件完整性检测系统发现,从而保证了对电子文件的完整性检查.文章介绍了CRC32、MD5、SHA-1算法的C语言实现.  相似文献   
10.
王贺  邵玥  宁涣昌 《建筑技术》2021,52(2):173-176
北京某文旅项目201单体为造型复杂的大跨度玻璃穹顶建筑,其机电管线和灯具在穹顶水平环梁和主拱梁上安装难度极大.经研究采用综合支架、合理规划路由等措施,满足了设计和使用要求.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号