首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   3篇
  国内免费   1篇
电工技术   2篇
综合类   1篇
机械仪表   1篇
  2023年   1篇
  2022年   3篇
排序方式: 共有4条查询结果,搜索用时 11 毫秒
1
1.
非金属管道在地下管网建设中得到广泛应用。 探地雷达法作为地下公共设施主要检测方法之一,常被用于地下非金属 管线探测中。 由于探测过程中存在非金属管道回波信号微弱、地下结构复杂、波速难以精确估算等问题,使雷达探测成像及定 位成为难题。 针对上述问题,研究了适用于埋地非金属管道的波速估算和回波信号处理方法,提出了空间频域插值成像和二值 化定位算法;通过数值仿真验证了所述成像定位方法的可行性,并进行了 0. 400、0. 600 和 1. 100 m 埋深的非金属管道现场测 试。 实验结果表明,所提方法能够有效消除双曲线效应,探测区域的成像定位误差分别为 0. 006、0. 006 和 0. 012 m,满足埋地非 金属管道定位需求。 研究成果可为埋地非金属管道成像及定位提供技术支持,有益于提高探地雷达对地下非金属管线的探测 精度。  相似文献   
2.
电磁流量计在工业生产过程中扮演着重要角色,但易受流体中气泡的影响导致测量结果出现波动进而影响测量精度。定量分析气泡在电磁流量计测量过程中产生影响的规律对提高电磁流量测量精度和实现气液两相流测量具有重要工程意义。针对上述问题,首先从权重函数角度入手,采用解析法建立了气泡尺寸、气泡偏心以及气泡数量对电磁流量测量影响的理论模型;其次,通过仿真和实验研究了管径为100 mm,圆形点电极半径为5 mm的电磁流量系统受气泡不同状态的影响,并采用输出电压灵敏度分析了气泡不同状态下对电磁流量测量的影响规律。研究结果表明,随着气泡尺寸增加其影响大小随之增加,气泡尺寸变化过程中影响在0.3%~5%范围内变化,最大为5%;气泡(直径为10 mm)沿电极方向偏心产生的影响在0.25%~0.6%范围内,且随偏心距离的增加而增加;气泡沿垂直电极方向偏心距离增加产生的影响微小,在-0.2%~0.2%范围内波动;同时,在气泡流动过程中,气泡越靠近电极截面影响越大并在电极截面位置产生影响最大值,单气泡最大值分别为0.18%、0.22%、-0.20%,随着气泡数量增加产生的影响逐渐增加,3气泡和6气泡影响最大值分别为0....  相似文献   
3.
受外界扰动和流速分布的影响,电磁流量计在进行流量测量过程中仍然存在测量精度不高的问题,改进电磁流量计励磁线圈结构是提高精度的重要手段之一.本文基于新型正八边形励磁线圈实现了电磁流量测量精度的提高,首先在研究权重函数优化原理的基础上,通过分析了正八边形线圈的磁场理论模型得出了基于均匀磁场理论的电磁流量计优化思路;其次,基于有限元分析软件建立了正八边形励磁线圈电磁流量计的仿真模型,确定了正八边形励磁线圈磁场分布最优的结构参数,并通过对比圆形和方形线圈同等条件下的权重函数分布,证明了正八边形线圈权重函数分布均匀性优势;最后搭建实验平台,进行磁场测试实验和流体测试实验进行验证.磁场测试结果表明,正八边形线圈电磁流量计磁感应强度在管道中心区域能够维持在2.063mT左右,总体磁感应强度波动范围在0.11mT以内,说明正八边形线圈磁场具有良好的均匀性;流体测试结果表明,当流量在0.743m/s-2.582m/s时,单点相对示值误差最大仅为0.950%,系统重复性误差在1.034%以下,经过优化后的系统提升了测量精度,对后续电磁流量测量计的励磁线圈设计具有指导意义.  相似文献   
4.
井下环空流量电磁测量系统可以实时获取井下环空流量信息,但环空流道侵入的气体会对其测量结果产生影响,导致测量系统无法准确对钻井过程中出现的溢流和井喷问题进行预警。针对环空流量电磁测量系统受气侵影响的问题,研究首先通过建立气侵对环空流量电磁测量系统影响的理论模型,获得了环空流量电磁测量系统虚电流密度函数;其次,采用有限元仿真软件对侵入气体的不同存在状态进行动态模拟,分析环空流量电磁测量系统的虚电流分布规律;最后,搭建模拟实验平台进行不同两相混合流量下的含气率影响实验。实验结果表明,随着环空流道内两相混合流体含气率在0%~5%范围内增加,不同两相混合流量下的环空流量电磁测量系统输出电压均呈现下降趋势,采用二次函数拟合不同两相混合流量下环空流量电磁测量系统输出电压与含气率关系,可决系数R~2在0.98以上,拟合残差e小于0.011;最终通过归一化的输出电压与含气率关系式校正环空测量流量。研究成果可用于降低气侵对测量结果的影响,提高井下环空流量电磁测量系统的测量精度。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号