首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   2篇
  国内免费   11篇
综合类   9篇
建筑科学   13篇
水利工程   4篇
一般工业技术   10篇
  2023年   2篇
  2022年   1篇
  2021年   4篇
  2020年   2篇
  2019年   5篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   2篇
  2011年   2篇
  2010年   3篇
  2009年   3篇
  2008年   1篇
  2007年   3篇
  2006年   1篇
  2005年   1篇
排序方式: 共有36条查询结果,搜索用时 15 毫秒
1.
试图建立由细观物理元件系统组成的物理模型,根据该模型的运动状态模拟准脆性材料的单轴受拉损伤破坏全过程。修正平行杆模型是基于准脆性材料单轴受拉破坏的宏观表现,考虑损伤材料名义应力和有效应力之间的等价关系,建立的考虑均匀损伤的物理模型。在此基础上,考虑破坏过程中局部软化阶段的尺寸效应,假设拉伸破坏过程发生在宽度一定的断裂过程区内,建立非局部的损伤物理模型——双本构物理模型,推导整个受力过程的本构关系。详细描述整个受力过程所经历的任意损伤状态,从一个新颖的视角对细观非均质材料的破坏机制进行探讨。通过该模型区分开实际试验过程中对应的峰值应力状态和出现宏观裂纹的临界状态,并且根据此临界状态将整个受力过程分为均匀损伤阶段和局部破坏阶段。算例表明,该模型可以较真实地反映准脆性材料在准静态单轴拉伸损伤破坏的整个过程中所表现出来的宏观特性。提出新的材料破坏理论——材料内在力学性能发挥机制理论,认为准脆性材料的整个受力破坏过程受这个内在规律支配。  相似文献   
2.
现有岩石材料断裂参数的测试方法不统一,测试结果存在尺寸效应;另一方面,即使给出材料参数,对应的岩石材料断裂破坏预测全曲线也尚未能建立。基于边界效应基本理论,研究岩石真实材料参数(断裂韧度及强度)的确定,及由确定的材料参数预测结构断裂破坏这2个拟解决而尚未圆满解决的关键科学问题。考虑岩石颗粒大小对断裂破坏的重要影响,在修正的边界效应计算模型中,引入岩石平均颗粒尺寸,进而实现由处于准脆性断裂状态下的小尺寸岩石试件,确定岩石无尺寸效应材料参数的目的。基于确定的材料参数(断裂韧度与拉伸强度),建立可描述塑性–准脆性–脆性特性的完整的岩石材料破坏预测曲线;分别考虑和忽略虚拟裂缝扩展影响,确定出满足线弹性断裂力学条件下的理论最小岩石试件尺寸。通过几何相似试件、非几何相似试件、几何相似与非几何相似试件组合的试验验证,证明了所建立理论与模型适用于岩石材料的真实断裂参数确定以及断裂破坏预测的分析。  相似文献   
3.
利用再生粗骨料取代天然粗骨料制备再生混凝土,开展了单轴受压动态力学性能试验,研究了应变速率、再生骨料取代率对再生混凝土应力-应变曲线特征、弹性模量、抗压强度和峰值应变的影响.利用统计损伤模型分析了再生混凝土的细观损伤演化规律.结果表明:不同应变速率下再生混凝土的单轴压缩应力-应变全曲线具有相似性,随着应变速率的提高,其抗压强度、弹性模量呈增大趋势,峰值应变则逐渐减小;当取代率为100%时,再生混凝土表现出更显著的应变速率敏感特性;随着应变速率的提高,表征细观损伤非均质演化过程的特征参数呈现出明显规律性的变化,与微结构应变率效应机理、宏观非线性本构行为之间表现出良好的一致性.  相似文献   
4.
为研究配置600 MPa高强钢筋混凝土梁的裂缝分布与宽度的变化规律及平均裂缝间距与最大裂缝宽度的计算方法,分别进行了4组8根不同配筋率的配置600 MPa高强钢筋混凝土梁,以及1组2根配置400 MPa钢筋对比梁受弯加载试验.通过实测各类型裂缝的分类统计分析,明确了结构设计中配置600 MPa高强钢筋混凝土梁的裂缝宽度验算对应的主要裂缝(开裂后各级荷载作用下可持续延伸,或迅速扩展到中性轴附近的裂缝)形态特征.结合试验研究结果,建议了裂缝截面有效受拉高度的计算方法.基于实测平均裂缝间距与各级荷载作用下实测最大裂缝宽度与采用现行国内外规范验算模式计算结果的比较分析,建立了适用于配置600 MPa高强钢筋的混凝土梁的平均裂缝间距计算式,提出了2种最大裂缝宽度的验算模式.由试验实测值与计算值的比较结果可知,所建议计算式的精度较好,且更适用于配置600 MPa高强钢筋的混凝土梁的裂缝宽度验算.  相似文献   
5.
应用比例边界有限元方法求解同轴电缆(环形域)静电场边值问题.为了避免特征值方法出现的奇异问题,采用Schur分解修正原有的特征值方法.在比例边界坐标变换的基础上,利用加权余量法将环形域静电场边值问题的控制方程半弱化为关于径向坐标的2阶常微分方程的两点边值问题,引入辅助变量将其降阶为1阶常微分方程,用Schur分解方法求解此方程可获得通解,并通过边界条件确定积分常数.计算不同截面形式的同轴电缆,结果表明,Schur分解很好地避免了特征分解的奇异性问题,与其他数值方法相比,此方法适用性强,且具有精度高、数据量小、运算量小的优点.  相似文献   
6.
为探明早期受冻后引起的带有初始损伤的混凝土材料在冻融循环与硫酸盐侵蚀耦合作用下力学性能的损伤演变规律,在制备混凝土试件养护期内,分别在7 d与14 d时实施冻融1次,使其产生不同程度的初始损伤,进而研究早期冻融造成的不同程度初始损伤对试件宏观性能与内部结构的影响作用。基于损伤力学理论,分别将混凝土试件的动弹性模量与抗压强度定义为损伤变量,对变量的损伤过程进行回归拟合分析,构建了由早期冻融造成的不同初始损伤试件在腐蚀受冻环境中的损伤演变方程。结果表明:两种带有不同初始损伤度的混凝土试件其各项力学性能的衰变过程受早期冻融影响均出现了"超前效应",且该效应的出现幅度与初始损伤度有着极大联系;同时,通过对比分析混凝土超声脉冲传播速度与内部缺陷区的变化过程得知,早期冻融加速了空洞与裂缝的扩展速度,对混凝土综合性能的初始值与后期抗盐冻能力存在不利影响;动弹性模量与抗压强度损伤演变方程可作为相似损伤程度下混凝土力学性能衰减的通用公式,为相似环境下结构的服役状态评估和寿命预测提供理论依据,同时可以基于动弹性模量与抗压强度的损伤关系式对二者进行相互推导,降低了由于仪器不足等原因导致数据获取不足的局限性。  相似文献   
7.
针对目前混凝土结构温控仿真及评价中存在缺乏考虑早龄期拉伸徐变的问题,建立了考虑多因素影响的拉伸徐变系数预测通式,开发了考虑拉伸徐变效应的混凝土温控仿真程序。利用拉伸徐变试验成果,对代表性的徐变系数预测模型,即CEBFIP90模型、ACI模型及双幂模型进行了参数识别、规律分析及模型修正后,用于混凝土早龄期拉伸徐变的预测与仿真。通过有限元算例,分析拉伸徐变对早龄期混凝土表面应力场的影响,结果表明拉伸徐变能有效减小早龄期混凝土表面拉应力值和改善表面应力场分布,对温控防裂有利。  相似文献   
8.
混凝土正交各向异性统计损伤本构模型研究   总被引:3,自引:2,他引:1  
基于统计损伤理论,本文建立了混凝土三维正交各向异性统计损伤本构模型,用于描述混凝土复杂荷载环境下的力学行为。该模型将单轴拉伸、压缩作为最基本的宏观破坏模式,复杂应力状态下的本构行为理解为2种基本模式的组合形式,考虑断裂、屈服两种细观损伤机制。提出新的"等效应变"假设,通过引入等效传递拉损伤应变和损伤影响参数,建立起复杂应力状态损伤演化过程与单轴损伤演化过程之间的等效关系。通过预测值与试验结果比较,表明该模型能够模拟多轴加载情况下材料均匀损伤阶段本构行为的主要力学特征,从变形特性、强度特征和破坏形式等角度对材料的损伤机制进行探讨。  相似文献   
9.
该文比较了边界效应模型(BEM)和尺寸效应模型(SEM)在研究材料断裂性能方面的不同。提出了由处于准脆性断裂状态的三点弯曲试件的峰值荷载Pmax,同时确定材料参数--断裂韧度KIC与拉伸强度ft的理论与方法。由于实验室条件下混凝土试件高度W与骨料最大粒径dmax的比例W/dmax约为5~20,试件的非均质性明显,破坏为准脆性断裂控制。因此,区别于以连续介质力学为基础的应用于准脆性断裂研究的力学模型,该文研究将骨料最大粒径dmax引入相应的断裂模型解析表达式中,由参数组合β dmax来计算结构峰值状态对应的裂缝扩展量,通过离散参数β的不同取值,实现了对材料参数--断裂韧度与拉伸强度的准确预测。基于不同学者的相同尺寸W而不同初始裂缝长度a0,以及相同初始缝高比a0/W而不同尺寸W的几何相似的砂浆、混凝土及岩石类材料试件的试验成果(骨料最大粒径dmax从1.2 mm~40 mm变化),验证了所提理论与方法的合理性。  相似文献   
10.
该文研究确定热轧碳素钢的材料韧度与强度特性,提出一种确定热轧碳素钢材料的断裂韧度与屈服强度的模型及方法。建立了等效裂缝长度、名义应力等具体设计参数的计算表达式。通过相同尺寸而不同初始缝高比的单边拉伸Q235B热轧碳素钢板的系列试验,证明所提模型及方法的合理性与适用性。所提模型及方法只需由小尺寸单边裂缝钢板的拉伸试验测得的屈服荷载,即可同时确定出热轧碳素钢平面应力条件下的断裂韧度KC及屈服强度σY。采用该文所提方法确定热轧碳素钢的材料特性,试验试样不需要满足现行国内外规范对试验试样尺寸、型式,加载条件等的严格规定,试样不需要预制疲劳裂纹。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号