首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   9篇
  国内免费   1篇
综合类   4篇
化学工业   10篇
机械仪表   6篇
  2023年   3篇
  2022年   1篇
  2021年   2篇
  2020年   2篇
  2019年   2篇
  2018年   3篇
  2017年   3篇
  2016年   1篇
  2014年   2篇
  2013年   1篇
排序方式: 共有20条查询结果,搜索用时 15 毫秒
1.
干气密封启停阶段的端面接触是不可避免的,为了揭示端面发生接触时的力学特性以保证干气密封稳定运行,运用统计学接触理论和等效阻尼思想,考虑密封环材料属性,推导出适用于分析干气密封干摩擦界面法向动态接触刚度和动态接触阻尼的解析模型,并通过实验测得密封环真实表面形貌,确定了接触模型的初始参数。探究干气密封端面发生接触时动态接触刚度和接触阻尼等参数的变化规律。结果表明,动态接触刚度随接触比压、扰动振幅的增大而增大。扰动频率对动态接触刚度的作用效果远小于接触比压或振幅对接触刚度的作用效果。动态接触阻尼随接触比压的增大而增大,随扰动频率和振幅的增大而减小。通过与多种经典接触模型对比,当前的计算结果与GW模型更为接近。针对干气密封碳化硅作为动环、石墨作为静环的配对方式,在端面未发生磨损时,结合面的微扰动态特性以动态接触刚度为主,动态接触阻尼较弱。法向接触特性的变化主要考虑50%临界脱开转速之前的接触阶段。  相似文献   
2.
综述流体动压槽加工工艺技术的研究进展,并评述各种加工技术在加工流体动压槽时存在的优缺点,包括光刻加工、电火花加工、电解加工、超声波加工、激光加工等;指出:光刻加工技术、电火花加工技术和激光加工技术加工流体动压槽是切实可行的,并已有成功案例,其中以激光加工技术应用得最为广泛,但其加工机制仍未得到深入研究;电解加工技术和超声波加工技术也具有加工流体动压槽的可行性;复合加工技术具有各种加工技术的优点,在流体动压槽加工方面具有更大的优势,是未来的一个发展方向;随着精密加工技术的不断发展,流体动压槽加工技术会朝着精确化、复杂化、高效化方向发展。  相似文献   
3.
含杂质二氧化碳实际气体干气密封性能研究   总被引:1,自引:0,他引:1       下载免费PDF全文
陈维  宋鹏云  许恒杰  孙雪剑 《化工学报》2020,71(5):2215-2229
基于EOS-CG模型和GERG-2008模型计算含杂质二氧化碳混合气体的密度,基于CO2-Pedersen模型计算混合气体的黏度。利用模型计算数据拟合获得含杂质二氧化碳混合气体密度、黏度与压力的关系式,用以描述混合气体的实际行为以及黏度随压力变化的规律。采用有限差分法求解稳态雷诺方程,得到了纯二氧化碳和含杂质二氧化碳干气密封开启力、泄漏率以及气膜刚度,并分析了杂质对二氧化碳干气密封性能(开启力、泄漏率、气膜刚度)的影响。考虑的变量有端面平均线速度、气膜厚度、进口温度以及进口压力等。结果表明:当进口压力为15.26 MPa,进口温度为363.15 K,线速度为74.030 m/s,气膜厚度为3.05 μm时,含杂质二氧化碳干气密封开启力和泄漏率都小于纯二氧化碳干气密封开启力和泄漏率,且杂质含量越多,差别越明显;杂质对二氧化碳干气密封开启力、泄漏率、气膜刚度的影响随端面平均线速度的增大而增大;对泄漏率、气膜刚度的影响随气膜厚度的增加而减小;对开启力、泄漏率、气膜刚度的影响随进口温度的增大而减小;对开启力的影响随进口压力的增大先减小,再增大,最后减小,对泄漏率的影响随进口压力的增大先增大后减小,对气膜刚度的影响随进口压力的增大先减小后增大。  相似文献   
4.
在干气密封的设计与研究过程中,一般将气体处理为理想气体,但在压力较高时的氮气或空气,以及某些特殊的气体,如二氧化碳、氢气等,即使压力不高的情况下,气体的特性明显偏离理想气体。重点介绍适用几种干气密封常用封气的气体状态方程,较全面地综述了实际气体效应影响干气密封性能的国内外研究进展,包括稳态性能和动态性能,并对未来的研究方向进行了展望。  相似文献   
5.
采用解析法分析外加压静压气体润滑机械密封(或称为静压干气密封)的节流孔直径、介质压力、气源压力等对其密封性能的影响。结果表明:节流孔直径、介质压力、气源压力的增加将导致开启力增加;较小的节流孔直径在较小工作气膜厚度下可获得较高气膜刚度;在气源压力恒定的情况下,较大的节流孔直径会导致较大的泄漏率,但随介质压力的增加,气膜刚度及向介质侧的泄漏率都会减小;提高气源压力,气膜刚度增大,在气膜厚度4~6μm之间增幅最为显著且能获得最大刚度;随着气源压力的增大,向端面两侧的泄漏率都有所增大;选用较小节流孔直径、提高气源压力或降低介质压力能保证密封的高刚度,提高其运行稳定性。  相似文献   
6.
许恒杰  宋鹏云  毛文元  邓强国 《化工学报》2017,68(12):4675-4684
以Chen等提出的氢气实际气体状态方程描述氢气的实际气体行为,以气体出口速度达到音速作为产生阻塞效应的条件,确定出口压力边界条件,采用小扰动法分析了干气密封操作参数对螺旋槽干气密封动态特性的影响规律,并与理想气体、强制出口压力边界模型中的动态特性系数进行了对比。结果表明:研究高压螺旋槽干气密封的动态特性时应当考虑实际气体效应和阻塞流效应。两种效应使氢气螺旋槽干气密封的直接动态气膜刚度减小,使直接动态气膜阻尼增大。随着压缩数、进口压力的增大,两种效应对动态气膜刚度的影响逐渐增强。以频率比为变量时,两种效应主要影响气膜刚度,对气膜阻尼的影响作用较小。针对所研究的工况,与理想气体和强制压力出口边界条件相比,考虑实际气体效应和阻塞流效应,以压缩数为变量时,动态气膜阻尼(Czz、Cαα、Cαβ)的平均偏差分别为2.28%、1.93%、2.79%;以进口压力为变量时,3种气膜阻尼的平均偏差分别达到4.08%、2.07%、1.82%。  相似文献   
7.
借鉴考虑惯性效应的气体止推轴承理论,以维里三项截断式描述二氧化碳的实际气体行为,同时考虑阻塞流效应和密封端面间气膜的黏度变化,采用有限差分法分别分析了层流状态下惯性效应对泵入式、泵出式螺旋槽干气密封稳态性能的影响规律,并与理想气体无惯性假设模型的计算结果进行了对比。结果表明:与理想气体相比,惯性效应对二氧化碳实际气体干气密封性能的影响程度更高。惯性效应使泵入式螺旋槽干气密封泄漏率和开启力均减小,而对泵出式螺旋槽干气密封的影响程度恰好相反。以泵入式螺旋槽干气密封为例,惯性效应对二氧化碳干气密封性能(泄漏率、开启力)的影响分别随密封压力和转速的增大而增强,随气膜厚度的增大而减小,密封压力为10 MPa,气膜厚度为3 μm,转速为20000 r·min-1时,惯性效应使泄漏率降低62.21%,开启力降低35.03%,使二氧化碳泵入式螺旋槽干气密封发生阻塞流动的临界进口压力提高。此外,二氧化碳的温度越接近其临界温度,惯性效应表现得越明显。  相似文献   
8.
借鉴考虑惯性效应的气体止推轴承理论,以维里三项截断式描述二氧化碳的实际气体行为,同时考虑阻塞流效应和密封端面间气膜的黏度变化,采用有限差分法分别分析了层流状态下惯性效应对泵入式、泵出式螺旋槽干气密封稳态性能的影响规律,并与理想气体无惯性假设模型的计算结果进行了对比。结果表明:与理想气体相比,惯性效应对二氧化碳实际气体干气密封性能的影响程度更高。惯性效应使泵入式螺旋槽干气密封泄漏率和开启力均减小,而对泵出式螺旋槽干气密封的影响程度恰好相反。以泵入式螺旋槽干气密封为例,惯性效应对二氧化碳干气密封性能(泄漏率、开启力)的影响分别随密封压力和转速的增大而增强,随气膜厚度的增大而减小,密封压力为10 MPa,气膜厚度为3μm,转速为20000 r·min-1时,惯性效应使泄漏率降低62.21%,开启力降低35.03%,使二氧化碳泵入式螺旋槽干气密封发生阻塞流动的临界进口压力提高。此外,二氧化碳的温度越接近其临界温度,惯性效应表现得越明显。  相似文献   
9.
螺旋槽底表面粗糙度受加工水平的制约,目前的控制水平一般为0.8μm。为了研究螺旋槽底表面粗糙度对干气密封性能的影响,将表面粗糙度近似等价于槽深的变化,采用近似解析法,分析不同槽深、不同膜厚下,表面粗糙度对干气密封端面开启力和泄漏率的影响。同时针对所研究的工况,对粗糙度为0.4μm和0.8μm时的端面开启力和泄漏率相对误差进行对比。结果表明:随着表面粗糙度的增大,其对端面开启力、泄漏率的影响增大,同时表面粗糙度对泄漏率的影响大于对端面开启力;槽底面表面粗糙度小于0.4μm时,表面粗糙度对泄漏率影响的相对误差在7%以内,端面开启力的相对误差在3%以内。  相似文献   
10.
宋鹏云  张帅  许恒杰 《化工学报》2016,67(4):1405-1415
为分析考虑实际气体效应和滑移流效应的螺旋槽干气密封性能,通过维里实际气体状态方程代替理想气体状态方程、有效黏性系数代替动力黏度修正窄槽理论螺旋槽干气密封气膜压力控制方程。以氮气(N2)、氢气(H2)、二氧化碳(CO2)为例,分别计算、对比无滑移理想气体、滑移理想气体、无滑移实际气体、滑移实际气体时螺旋槽干气密封的泄漏率、槽根处压力、端面开启力。结果表明:滑移流效应使气体泄漏率增大、槽根处压力和端面开启力降低;实际气体效应使易受压缩气体(压缩因子Z<1)的泄漏率、槽根压力、端面开启力增大,使不易受压缩气体(压缩因子Z>1)泄漏率、槽根压力、端面开启力减小。随着气体压力增大,滑移流效应逐渐减弱,而实际气体效应增强;低压下滑移流效应起主导作用,高压下实际气体效应起主导作用。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号