首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8506篇
  免费   664篇
  国内免费   267篇
电工技术   362篇
综合类   352篇
化学工业   1486篇
金属工艺   389篇
机械仪表   580篇
建筑科学   724篇
矿业工程   238篇
能源动力   241篇
轻工业   621篇
水利工程   104篇
石油天然气   523篇
武器工业   60篇
无线电   1025篇
一般工业技术   1255篇
冶金工业   434篇
原子能技术   98篇
自动化技术   945篇
  2024年   2篇
  2023年   158篇
  2022年   189篇
  2021年   329篇
  2020年   279篇
  2019年   250篇
  2018年   262篇
  2017年   322篇
  2016年   265篇
  2015年   283篇
  2014年   452篇
  2013年   530篇
  2012年   541篇
  2011年   661篇
  2010年   528篇
  2009年   511篇
  2008年   498篇
  2007年   424篇
  2006年   415篇
  2005年   360篇
  2004年   256篇
  2003年   225篇
  2002年   184篇
  2001年   171篇
  2000年   157篇
  1999年   250篇
  1998年   178篇
  1997年   172篇
  1996年   121篇
  1995年   99篇
  1994年   83篇
  1993年   57篇
  1992年   40篇
  1991年   40篇
  1990年   27篇
  1989年   23篇
  1988年   18篇
  1987年   20篇
  1986年   10篇
  1985年   6篇
  1984年   7篇
  1983年   2篇
  1982年   4篇
  1981年   5篇
  1980年   5篇
  1977年   2篇
  1976年   5篇
  1975年   2篇
  1972年   2篇
  1968年   2篇
排序方式: 共有9437条查询结果,搜索用时 15 毫秒
1.
Feng  Yingrui  Hu  Kang  Zhang  Min  Ding  Wei  Kong  Xiangkai  Sheng  Zhigao  Liu  Qiangchun 《Journal of Materials Science》2022,57(1):204-216
Journal of Materials Science - Rationally designing microwave absorption materials with highly efficient and tunable bandwidth is in great demand but remains a huge challenge. In this study,...  相似文献   
2.
The present work was conducted to illustrate the mechanism of gel formation of myofibrillar proteins (MPs) under different microwave heating times. The results showed that the denaturation enthalpy (ΔH) of the MPs significantly decreased when the heating time increased from 3 to 9 s and then completely disappeared as the heating time progressed, indicating that the MPs gradually denatured and subsequently aggregated with increasing heating time, which was further verified by the changes in the secondary structure, electrophoretic bands, and gel properties (e.g., water holding capacity and textural profiles) of the MPs. Microstructural images indicated that the MP gel formed under 12 s had the most compact network, indicating that extended microwave heating time could induce quality deterioration of MP gels. Moreover, the hydrophobic forces, electrostatic forces, and disulphide bonds of the MPs gradually intensified with increasing microwave heating time, suggesting that both non-covalent and covalent bonds could promote molecular denaturation and subsequent aggregation of MPs. In addition, correlation analysis revealed that the changes in the molecular conformation of MPs induced by different microwave heating times could effectively regulate the formation of MP gels and their related properties.  相似文献   
3.
Liu  Wei  Zhao  Fusheng  Kong  Meiling  Yin  Songfeng  Wang  Huiying  Liu  Xiaoying 《Fire Technology》2022,58(5):2811-2823
Fire Technology - The use of perfluorinated hexanone as a fire extinguishing agent for lithium-ion batteries (LIBs) has been steadily increasing in China in recent years. It successfully handles...  相似文献   
4.
Adsorption separation of olefin and paraffin can greatly lower the energy consumption associated with the currently utilized distillation technique but remains a great challenge. Herein, we report the efficient separation of propylene (C3H6) and propane (C3H8) in a phosphate anion-functionalized metal–organic framework (MOF) ZnAtzPO4 by synergetic effect of equilibrium and kinetics. The material features periodically expanded and contracted apertures decorated with electronegative groups, offering eligible pore shape and pore chemistry to effectively trap C3H6 under moderate isosteric heat of adsorption (27.5 kJ mol−1) while obstruct the diffusion of C3H8. It simultaneously combines excellent thermodynamic selectivity (uptake ratio of 1.71) and kinetic selectivity (~31) for C3H6/C3H8 separation, meanwhile can be easily regenerated. Breakthrough experiment for C3H6/C3H8 gas mixture was conducted and confirmed the outstanding separation capability of ZnAtzPO4. The equilibrium and kinetics cooperative C3H6/C3H8 adsorption separation was for the first time found in anion-functionalized MOFs, and further confirmed by computational studies.  相似文献   
5.
简述了磁化处理的发展历程,阐述了磁化处理对浮选水系性质的影响规律及其机理,列举了磁化处理在金属矿、非金属矿、煤等不同物料浮选中应用的研究结果,总结分析发现磁化处理在浮选中应用具有简化工艺流程、优化分选指标、减少药剂消耗等优势.磁化处理影响浮选的机理尚不明确,磁化处理影响浮选的因素及影响规律、设备和工艺也有待进一步研究.理论分析、计算机模拟、实验和先进的检测方法相结合,对磁化处理应用于浮选的机理、影响因素及影响规律、工艺及设备进行深入研究是今后的发展趋势.  相似文献   
6.
The hardness and toughness of regenerated cemented carbides, in general, are contradictory. Therefore, it is critical to explore regenerated cemented carbides with both high hardness and high toughness. In this study, regenerated WC-8-wt% Co cemented carbide with SiC nanowhisker were prepared by low-pressure sintering. The influence of SiCw contents on the microstructure and mechanical properties of regenerated WC-8-wt% Co cemented carbide was investigated. The results indicated that the hardness, density, flexural strength, and fracture toughness of regenerated cemented carbide first increased and then decreased with the addition of SiCw. The Vickers hardness, density, flexural strength, and fracture toughness could reach 1575 HV, 14.6 g/cm3, 2204 MPa, 16.85 MPa·m1/2, respectively, with SiCw content 0.5 wt%, which were increased by 14.4%, 0.7%, 12.2%, and 17.3%, respectively, when compared with the regenerated cemented carbide without SiCw. The lowest friction coefficient and the best wear resistance could be also reached when 0.5-wt% SiCw was added. The fracture mechanism of the regenerated cemented carbide contained both transgranular and intergranular fracture through the microscopic observation of fracture surface via scanning electron microscope.  相似文献   
7.
Nickel-graphite self-lubricating composites are a promising candidate to be used in turbine constructions that are usually exposed to high temperature oxidation and wear.However,the high-temperature stability of graphite as well as the effect that the oxide scale will play on the following wear process are still yet in debate.In this work,oxidation behavior of a NiCrAl-graphite composite and the subsequent friction and wear performances were studied.Results indicate that graphite is stable in the composites after oxidation at T≤400 ℃ for 300 h,which contributes synergistically with the thin oxide film to self-lubrication.The friction coefficient is below 0.20 and the wear rate is ~1.43×10~(-5) mm~3 N~(-1) m~(-1).The composite has the highest friction coefficient and wear rate when it was suffered from the high temperature oxidation at 500 ℃.Once it was oxidized at 600 ℃,a glaze layer would develop during the subsequent sliding.It plays a positive role in improving tribological properties though in the absence of lubricant phase of graphite,with to be exactly the friction coefficient and wear rate reduced by 13% and 21%,respectively,in comparison with the case of oxidation at 500℃.  相似文献   
8.
The soft nature of organic–inorganic halide perovskites renders their lattice particularly tunable to external stimuli such as pressure, undoubtedly offering an effective way to modify their structure for extraordinary optoelectronic properties. Here, using the methylammonium lead iodide as a representative exploratory platform, it is observed that the pressure-driven lattice disorder can be significantly suppressed via hydrogen isotope effect, which is crucial for better optical and mechanical properties previously unattainable. By a comprehensive in situ neutron/synchrotron-based analysis and optical characterizations, a remarkable photoluminescence (PL) enhancement by threefold is convinced in deuterated CD3ND3PbI3, which also shows much greater structural robustness with retainable PL after high peak-pressure compression–decompression cycle. With the first-principles calculations, an atomic level understanding of the strong correlation among the organic sublattice and lead iodide octahedral framework and structural photonics is proposed, where the less dynamic CD3ND3+ cations are vital to maintain the long-range crystalline order through steric and Coulombic interactions. These results also show that CD3ND3PbI3-based solar cell has comparable photovoltaic performance as CH3NH3PbI3-based device but exhibits considerably slower degradation behavior, thus representing a paradigm by suggesting isotope-functionalized perovskite materials for better materials-by-design and more stable photovoltaic application.  相似文献   
9.
Multifluid model (MFM) simulations have been carried out on liquid–solid fluidized beds (LSFB) consisting of binary and higher-order polydisperse particle mixtures. The role of particle–particle interactions was found to be as crucial as the drag force under laminar and homogenous LSFB flow regimes. The commonly used particle–particle closure models are designed for turbulent and heterogeneous gas–solid flow regimes and thus exhibit limited to no success when implemented for LSFB operating under laminar and homogenous conditions. A need is perceived to carry out direct numerical simulations of liquid–solid flows and extract data from them to develop rational closure terms to account for the physics of LSFB. Finally, a recommendation flow regime map signifying the performance of the MFM has been proposed. This map will act as a potential guideline to identify whether or not the bed expansion characteristics of a given polydisperse LSFB can be correctly simulated using MFM closures tested.  相似文献   
10.
Polymeric elastomers play an increasingly important role in the development of stretchable electronics. A highly demanded elastic matrix is preferred to own not only excellent mechanical properties, but also additional features like high toughness and fast self-healing. Here, a polyurethane (DA-PU) is synthesized with donor and acceptor groups alternately distributed along the main chain to achieve both intra-chain and inter-chain donor-acceptor self-assembly, which endow the polyurethane with toughness, self-healing, and, more interestingly, thermal repair, like human muscle. In detail, DA-PU exhibits an amazing mechanical performance with elongation at break of 1900% and toughness of 175.9 MJ m−3. Moreover, it shows remarkable anti-fatigue and anti-stress relaxation properties as manifested by cyclic tensile and stress relaxation tests, respectively. Even in case of large strain deformation or long-time stretch, it can almost completely restore to original length by thermal repair at 60 °C in 60 s. The self-healing speed of DA-PU is gradually enhanced with the increasing temperature, and can be 1.0–6.15 µm min−1 from 60 to 80 °C. At last, a stretchable and self-healable capacitive sensor is constructed and evaluated to prove that DA-PU matrix can ensure the stability of electronics even after critical deformation and cut off.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号