首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8846篇
  免费   773篇
  国内免费   468篇
电工技术   491篇
综合类   569篇
化学工业   1385篇
金属工艺   588篇
机械仪表   446篇
建筑科学   766篇
矿业工程   400篇
能源动力   209篇
轻工业   523篇
水利工程   171篇
石油天然气   770篇
武器工业   64篇
无线电   1029篇
一般工业技术   1079篇
冶金工业   440篇
原子能技术   54篇
自动化技术   1103篇
  2024年   23篇
  2023年   166篇
  2022年   277篇
  2021年   419篇
  2020年   344篇
  2019年   304篇
  2018年   308篇
  2017年   331篇
  2016年   252篇
  2015年   381篇
  2014年   441篇
  2013年   576篇
  2012年   594篇
  2011年   612篇
  2010年   537篇
  2009年   514篇
  2008年   444篇
  2007年   493篇
  2006年   483篇
  2005年   390篇
  2004年   259篇
  2003年   216篇
  2002年   182篇
  2001年   182篇
  2000年   184篇
  1999年   249篇
  1998年   178篇
  1997年   134篇
  1996年   135篇
  1995年   120篇
  1994年   98篇
  1993年   61篇
  1992年   52篇
  1991年   42篇
  1990年   24篇
  1989年   21篇
  1988年   16篇
  1987年   9篇
  1986年   10篇
  1985年   7篇
  1984年   2篇
  1983年   4篇
  1982年   6篇
  1981年   1篇
  1980年   3篇
  1977年   1篇
  1976年   1篇
  1951年   1篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
1.
Reliable joints of Ti3SiC2 ceramic and TC11 alloy were diffusion bonded with a 50 μm thick Cu interlayer. The typical interfacial structure of the diffusion boned joint, which was dependent on the interdiffusion and chemical reactions between Al, Si and Ti atoms from the base materials and Cu interlayer, was TC11/α-Ti + β-Ti + Ti2Cu + TiCu/Ti5Si4 + TiSiCu/Cu(s, s)/Ti3SiC2. The influence of bonding temperature and time on the interfacial structure and mechanical properties of Ti3SiC2/Cu/TC11 joint was analyzed. With the increase of bonding temperature and time, the joint shear strength was gradually increased due to enhanced atomic diffusion. However, the thickness of Ti5Si4 and TiSiCu layers with high microhardness increased for a long holding time, resulting in the reduction of bonding strength. The maximum shear strength of 251 ± 6 MPa was obtained for the joint diffusion bonded at 850 °C for 60 min, and fracture primarily occurred at the diffusion layer adjacent to the Ti3SiC2 substrate. This work provided an economical and convenient solution for broadening the engineering application of Ti3SiC2 ceramic.  相似文献   
2.
The joining of liquid-phase sintered SiC (LPS-SiC) ceramics was conducted using spark plasma sintering (SPS), through solid state diffusion bonding, with Ti-metal foil as a joining interlayer. Samples were joined at 1400 °C, under applied pressures of either 10 or 30 MPa, and with different atmospheres (argon, Ar, vs. vacuum). It was demonstrated that the shear strength of the joints increased with an increase in the applied joining pressure. The joining atmosphere also affected on both the microstructure and shear strength of the SiC joints. The composition and microstructure of the interlayer were examined to understand the mechanism. As a result, a SiC-SiC joining with a good mechanical performance could be achieved under an Ar environment, which in turn could provide a cost-effective approach and greatly widen the applications of SiC ceramic components with complex shape.  相似文献   
3.
SiC is a promising functional ceramic material with many great properties. High concentrated SiC slurry with excellent rheology and stability is required in some processes of ceramic forming. In this work, the dispersion of SiC powders was obviously improved by ternary modifiers: γ-(2,3-epoxypropoxy) propytrimethoxysilane (KH560), sodium humate and sodium dodecyl sulfate (SDS). Modified SiC slurry showed the lowest viscosity of 0.168 Pa s at a solid content of 50 vol%. The maximum absolute value of zeta potential of SiC increased from 47.3 to 61.6 mV by modification. Sedimentation experiments showed that a highly stable suspension of modified SiC was obtained at pH 10. SiC green body with high density of 2.643 g/cm3 was prepared with modified powders by slip casting. X-ray photoelectron spectra (XPS) and thermogravimetry (TG) measurements indicated the adsorption of modifiers on SiC surface. Therefore, modified SiC powders could stably disperse in aqueous media due to the increase of electrosteric repulsion between particles. The novel strategy used in this study could further improve the dispersion of SiC powders.  相似文献   
4.
5.
6.
Konjac glucomannan/sodium alginate composite edible boba (KGM/SA-boba) with good taste is very popular in China, and it is an outstanding carrier for health potential ingredients. In this work, KGM/SA-boba were fortified with 0.25, 0.50, 0.75 and 1.00% purple sweet potato anthocyanin (PSPA), then characterised by the water distribution, texture, microstructure, in vitro release property of PSPA and antioxidant capacity. LF-NMR analysis demonstrated that the free water of KGM/SA-boba could transfer to tightly bound water with the addition of PSPA that made it with better water-binding ability, higher springiness and lower hardness. And the results of SEM and rheology showed that PSPA could stabilise the microstructure of KGM/SA-boba by forming more amorphous regions and hydrogen bonds proved by the results of DSC and FT-IR. Furthermore, 50% of PSPA in PSPA-fortified KGM/SA-boba can be released at the first hour in a simulated gastrointestinal environment. And the scavenging capacity of DPPH and ABTS of the PSPA-fortified KGM/SA-boba after digestion was higher than that of PSPA alone. Generally, PSPA could improve the texture while KGM/SA-boba in turn would make PSPA more stable in the gastrointestinal digestive system.  相似文献   
7.
牛佳  尉广飞  董林林 《广东化工》2022,49(1):77-81,65
目的:制备火麻仁油微乳凝胶补水面膜并对其理化性质、保湿性和抗氧化活性进行评价.方法:通过伪三元相图确定火麻仁油微乳最佳处方,采用单因素及正交试验优化火麻仁油微乳凝胶处方,载入保湿活性物质制得火麻仁油微乳凝胶面膜并对其质量、稳定性、保湿性和抗氧化活性进行评价.结果:火麻仁油微乳最佳处方:火麻仁油0.2%、PEG-20氢化蓖麻油0.53%、1,3丙二醇0.27%.火麻仁油微乳凝胶最佳处方为卡波姆-940含量1%,丙三醇含量5%,稀释倍数30倍.制得的微乳凝胶澄清透明、涂展性较好、易清洗、不油腻;平均粒径为(30.91±0.31)nm,PDI为0.299±0.017,电位为(-3.54±0.43)mV;黏度为494725.15 mPa·s;pH值为5.50±0.01;保湿效果优于市售某凝胶面膜;火麻仁油微乳凝胶面膜对DPPH自由基清除率高于火麻仁油毛油,质量浓度为6 mg·mL-1时可达62.39%,IC50为3.71 mg·mL-1.结论:火麻仁油微乳凝胶面膜安全、稳定,制备工艺简单,对皮肤具有良好的补水和抗氧化效果,具备开发和推广的价值.  相似文献   
8.
A bulk (Hf0.2Ta0.2Zr0.2Nb0.2Ti0.2)C high-entropy ceramic (HEC) with a high density was prepared by hot pressing (HP), and through a robust joining technique, large-sized piece was fabricated. A hot-pressed carbide HEC with a single-phase and homogeneous composition was obtained at the sintering temperatures from 1800 to 1950 °C for 30 min under a pressure of 30 MPa. The influence of sintering temperature on the mechanical properties of the HEC was investigated, and the flexural and compressive strengths were reported. Additionally, the feasibility of active brazing of this HEC was studied and solid joints with high shear strength were obtained by atomic diffusion and chemical reaction at the interface, providing a key approach to fabricate complex components of HECs.  相似文献   
9.
Artificial nitrogen fixation is emerging as a promising approach for synthesis of ammonia at mild conditions. Inspired by biological nitrogen fixation based on bacteria containing iron, zinc doped Fe2O3 nanoparticles are proposed as an efficient and earth abundant electrocatalyst for converting N2 to NH3. In neutral media, it achieves a maximum Faradaic efficiency (FE) of 10.4% and a large NH3 yield rate of 15.1 μg h?1 mg?1cat. at ?0.5 V vs. reversible hydrogen electrode. This catalyst also exhibits excellent selectivity and stability. Theoretical calculations suggest the reaction follows the associative enzymatic mechanism and it has a barrier of as low as 0.68 eV.  相似文献   
10.
The nickel-carbon nanofibers (Ni-C NFs) were fabricated by the electrospinning of poly(vinyl alcohol) (PVA) and nickel acetate tetrahydrate (NiAc) solution precursor with succedent PVA pyrolyzation and calcination process. The microwave absorption performance and electromagnetic (EM) parameters of the NFs were researched over the frequency range of 2.0–18.0?GHz. Both the impedance matching and EM wave absorption properties of the Ni-C NFs were improved by changing the carbonization temperature. The effect of graphitization degree on reflection loss (RL) and the possible loss mechanisms were directly displayed in the comparative study of each sample. The optimal RL value of ??44.9?dB and an effective frequency bandwidth of 3.0?GHz under a thickness of 3.0?mm can be reached by a sample calcined at 650?°C. These lightweight Ni-C NFs composites can be promising candidates for EM wave absorbers due to the combination of multiple loss mechanisms, nano-size effect and good impedance matching between Ni nanoparticles and CNFs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号