To advance commercial application of forward osmosis (FO), we investigated the effects of two additives on the performance of polysulfone (PSf) based FO membranes: one is poly(ethylene glycol) (PEG), and another is PSf grafted with PEG methyl ether methacrylate (PSf-g-PEGMA). PSf blended with PEG or PSf-g-PEGMA was used to form a substrate layer, and then polyamide was formed on a support layer by interfacial polymerization. In this study, NaCl (1 mol?L–1) and deionized water were used as the draw solution and the feed solution, respectively. With the increase of PEG content from 0 to 15 wt-%, FO water flux declined by 23.4% to 59.3% compared to a PSf TFC FO membrane. With the increase of PSf-g-PEGMA from 0 to 15 wt-%, the membrane flux showed almost no change at first and then declined by about 52.0% and 50.4%. The PSf with 5 wt-% PSf-g-PEGMA FO membrane showed a higher pure water flux of 8.74 L?m–2?h–1 than the commercial HTI membranes (6–8 L?m–2?h–1) under the FO mode. Our study suggests that hydrophobic interface is very important for the formation of polyamide, and a small amount of PSfg-PEGMA can maintain a good condition for the formation of polyamide and reduce internal concentration polarization.
The stability of the left-bank slope is a crucial geological engineering problem at the Baihetan hydropower station, China. Due to continuous excavations on the rock slope, different regions of the surrounding rock mass undergo varying degrees of unloading deformation. It is important to assess the stability of the rock slope from a macroscopic viewpoint by investigating its deformation characteristics and mechanisms. Therefore, in this work, microseismic (MS) monitoring was first employed to detect the progressive rock mass damage in the rock slope subjected to excavation, including the initiation, propagation, coalescence, and interaction of rock microfractures. Numerical modeling was subsequently performed to understand the deformation and failure mechanism of the rock slope. Moreover, traditional surveying approaches (i.e., multiple-point extensometers and inclinometers) and field observations were also used to analyze the deformation and failure characteristics of the rock slope. The MS monitoring results showed that spatiotemporal regularities in the evolution of seismic source locations were indicators of deformation failure and potential sliding surfaces. MS event clustering can be used to delineate activated pre-existing geological structures (i.e., LS331 and LS337). The simulation results show that the deformation and failure characteristics of the rock slope are mainly controlled by pre-existing weak structural planes (i.e., the intraformational faulted zones LS3319, LS331, and LS337 and fault F17). These results agree well with the results of geological data and conventional monitoring data. Our study reveals that an integrated approach combining MS monitoring, numerical modeling, traditional surveying, and field observations leads to a better understanding of the behavior of the rock slope under the influence of excavation as well as greater control of the working faces, ensuring safety under complex geological and excavation conditions. 相似文献
This study aimed to explore Lake Turkana's ecological reliance on hydrology and to determine the hydrological changes and consequences arising from the major hydropower and irrigation developments in the lake's basin. The major developments on Ethiopia's Omo River are especially significant as this river provides over 80% of the lake's annual freshwater influx and associated nutrients. The cascade of hydropower dams permanently dampens the natural hydrological cycles and lake level variability. The driving force of the flood influx to the lake is curtailed and the pattern of lake currents will adjust. Ultimately 80% of the river inflow to the lake will be regulated. Large volumes of water are required to initially fill the hydropower dam reservoirs. During 2015–16 when the huge Gibe III reservoir was filled, Lake Turkana's water level declined 2?m.The study has shown that large-scale irrigation schemes in the Lower Omo can potentially abstract 50% of the Omo River water, and that this would cause the lake level to shrink permanently to the detriment of the lake ecology. Possible lake level drops of over 15?m are demonstrated. The basin's natural capital is being replaced by large-scale plantation developments. The hydrological changes are drastic and the ecological consequences on Lake Turkana have not been fully understood. Without serious mitigation measures, Lake Turkana is a potential African Aral Sea disaster in the making, emulating what has happened to other great lakes such as Lake Chad. 相似文献
High-density polyethylene (HDPE) have been widely used as materials of hollow molded articles, extrusion molded articles, films and sheets. The properties of HDPE vary depending on its application fields and processing methods thereof. Approximately 50 million tons of HDPE are produced annually around the worldwide by slurry phase processes. In this paper, the status of slurry phase polyethylene processes in China is briefly introduced. Two of the most important licensers of continuous stirred tank reactor (CSTR) type slurry phase polyethylene processes, namely, Hostalen (Licensed by Basell), CX (Licensed by Mitsui), with a dual- or three-reactor are reviewed. The merits and demerits of the examined polyethylene production technologies are discussed in detail. Catalyst is a key of polyolefin technology. It does have an extremely close relationship with the performance of polyethylene. The characteristics and disadvantages of different catalysts for the two processes are summarized for comparison, including the PZ and RZ catalysts of Mitsui, the BCH and BCE catalysts of Beijing Research Institute of Chemical Industry, the TH series catalysts of Basell. Some advices on the development and application of HDPE catalysts for the slurry process are proposed. 相似文献
The empirical relationship between electricity consumption and gross domestic product, population, the product of primary industry, second industry, and tertiary industry are investigated. The strong multicollinearity among EC’s affecting factors does not meet the criteria of the ordinary least square regression (OLS) regression model. Principle component analysis is used to eliminate multicollinearity. Three principle components with no multicollinearity can explain 99.34 % of affecting factors’ variance. The three principle components seemed as independent, and EC seemed as dependent variables when OLS regression is employed. The results show that: gross domestic product, primary industrial production value, second industrial production value, and tertiary industrial production value codetermined the trend of electricity consumption, while the proportion of primary industrial production value, second industrial production value, and tertiary industrial production value and population codetermined the starting point and fluctuation of electricity consumption; the economic scale is the mainly affecting factors on electricity consumption; as some parts of electricity consumed by primary industry are not included in the state grid, there is an illusion that the primary industry can produce electricity. 相似文献
This research note investigates the efficiency of ozone for the degradation of threeherbicides, imazapyr[2-(4-isopropyl-4-methyl-S-oxo-2-imidazolin-2-yl)-nicotinic acid], triclopyr (3,5,6-trichloro-2-pyridinyloxyacetic acid) and diuron [3-(3,4-dichlorophenyl)-1,1-dimethylurea] under controlled laboratory conditions. Experiments were conducted at pH 7.5, in a bubble contactor column, with a raw lowland surface water spiked with initial active ingredient concentrations of 2 μgL−1. The ozone doses applied and consumed were 4.79 and 2.9 mg O3L−1 respectively, and resulted in removals of 53%, 48% and 90% of imazapyr, triclopyr and diuron, respectively. 相似文献
Fouling of polymeric membranes remains a major challenge for long‐term operation of oily‐water remediation. The common reclamation methods to recycle fouled membranes have the issues of either incomplete degradation of organic pollutants or damage to filter membranes. Here, a calcinable polymer membrane with effective reclamation after fouling is reported, which shows full recovery of the original oil/water separation efficiency. The membrane is made of polysulfonamide/polyacrylonitrile fibers by emulsion electrospinning, followed by hydrothermal decoration of TiO2 nanoparticles. The bonding structured fibrous membrane displays outstanding thermal stability in air (400 °C), strong acid/alkali resistance (at the pH range from 1 to 13), and robust tensile strength. As a result, the chemically fouled polymeric membrane can be easily reclaimed without decreasing in separation performance and mechanical properties by annealing treatment. As a proof‐of‐concept, the as‐prepared membrane is integrated into a wastewater separation tank, which achieves a high water flux over 3000 L m?2 h?1 and oil rejection efficiency of 99.6% for various oil‐in‐water emulsions. The presented strategy on membrane fabrication is believed to be an effective remedy for membrane fouling, and should apply in a wider field of filtration industry. 相似文献