首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   76039篇
  免费   4172篇
  国内免费   3338篇
电工技术   1986篇
综合类   4457篇
化学工业   18843篇
金属工艺   11635篇
机械仪表   7631篇
建筑科学   2722篇
矿业工程   1822篇
能源动力   758篇
轻工业   6128篇
水利工程   691篇
石油天然气   3265篇
武器工业   625篇
无线电   7456篇
一般工业技术   9371篇
冶金工业   3769篇
原子能技术   600篇
自动化技术   1790篇
  2024年   86篇
  2023年   1758篇
  2022年   1791篇
  2021年   1762篇
  2020年   1846篇
  2019年   2014篇
  2018年   1131篇
  2017年   1590篇
  2016年   1679篇
  2015年   1991篇
  2014年   4422篇
  2013年   3161篇
  2012年   4088篇
  2011年   4138篇
  2010年   3896篇
  2009年   4350篇
  2008年   5262篇
  2007年   4783篇
  2006年   4082篇
  2005年   4286篇
  2004年   3464篇
  2003年   2767篇
  2002年   2406篇
  2001年   2125篇
  2000年   1873篇
  1999年   1568篇
  1998年   1479篇
  1997年   1402篇
  1996年   1347篇
  1995年   1183篇
  1994年   1103篇
  1993年   911篇
  1992年   961篇
  1991年   867篇
  1990年   876篇
  1989年   831篇
  1988年   100篇
  1987年   43篇
  1986年   38篇
  1985年   19篇
  1984年   19篇
  1983年   11篇
  1982年   16篇
  1981年   18篇
  1980年   2篇
  1975年   1篇
  1965年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
使用低温等离子体技术对毛织物进行预处理,通过毛织物数码印花润湿性能的试验数据,确定低温等离子体预处理的最佳工艺参数;通过断裂强力、得色量及渗透率等各项指标,研究低温等离子体预处理对毛织物数码印花性能的影响。结果表明,毛织物的低温等离子体预处理最佳工艺参数为:输出功率60 W,处理时间60 s,气体流速1.50 L/min;经低温等离子体预处理后数码印花毛织物的断裂强力、得色量(K/S值)及渗透性能均有明显提升;染色牢度基本保持不变,织物手感变硬变差。  相似文献   
2.
雷勇  赵威  何宁  李亮 《中国机械工程》2022,33(5):583-588
进行了TC17钛合金低温铣削试验,研究了不同切削条件下的已加工表面粗糙度。采用回归分析方法建立了表面粗糙度经验模型,研究了射流温度、每齿进给量、铣削速度和径向切削深度对表面粗糙度的影响规律。基于BP神经网络建立了表面粗糙度预测模型,并与经验模型进行了对比分析。研究结果表明,基于经验模型表面粗糙度值与参数间存在强相关性(R2=0.92),对表面粗糙度影响最大的因素为每齿进给量,然后依次是射流温度、径向切削深度、铣削速度,预测值与试验值均方误差为1.73×10-4 μm2,最大相对误差为8.81%,误差变化幅度较大;而基于神经网络模型的预测值与试验值均方误差为3.53×10-5 μm2,最大相对误差为3.64%,误差变化幅度较小,与经验模型相比,神经网络模型的预测精度和泛化能力更高,可更好地实现各参数对表面粗糙度影响的预测。  相似文献   
3.
采用合适的渗铝氧化处理工艺在CLAM钢基体表面制备了铝化物涂层,然后利用XRD、EPMA、SEM、纳米压痕仪、室温拉伸试验机等手段研究了渗铝氧化处理前后组织和力学性能变化,尤其是涂层的相组成变化,进而详细分析了硬度变化和拉伸断口的断裂机制。结果表明,渗铝氧化处理后在CLAM钢表面形成了由约30.8 μm厚的FeAl相层和约70.7 μm厚的α-Fe(Al)固溶体层组成的铝化物涂层,最外层FeAl相的硬度最大为834.7 HV,由外向内硬度逐渐降低至315.1 HV,基体内部的硬度出现略微回升。CLAM钢在渗铝氧化前后的抗拉强度分别为581.38 MPa和555.83 MPa,断后伸长率分别为30%和28%,断裂模式由渗铝氧化前的韧性断裂变成准解理断裂。由于渗铝及氧化热处理导致的晶粒尺寸增大和第二相粒子聚集,CLAM钢在渗铝氧化后拉伸性能下降,同时在表面涂层处易产生裂纹源从而加速材料断裂。  相似文献   
4.
针对于可溶性陶瓷纤维给出一种表面改性的工艺,探讨了表面改性对于可溶性陶瓷纤维抗拉强度、加热永久线变化、导热系数性能的影响,得出了其对耐候性有利的评价。同时,探讨了表面改性对于可溶性陶瓷纤维降解性的影响,给可溶性陶瓷纤维长期储存提供了解决方案。  相似文献   
5.
李秋  姜雨杭  耿海宁  陈伟 《硅酸盐通报》2022,41(5):1805-1812
钢结构因具有多种优点而被广泛应用于工程建筑领域,但其在火灾高温环境下会丧失力学性能,造成结构失效,因此对钢结构进行防火保护成为关键。以偏高岭土、矿粉和憎水处理后的膨胀珍珠岩为主要原材料,模数为1.5的钾水玻璃为激发剂,制备非膨胀型钾基地聚物基防火涂料,并采用大板燃烧法研究该涂料在1 200 ℃下的防火性能;同时,对其在室温、1 000 ℃以及1 100 ℃热处理前后的力学性能、表观形貌、物相组成、微观结构演变进行了表征分析,探究地聚物在高温过程中的陶瓷化过程。结果表明:该防火涂料具有优异的防火能力,在1 200 ℃下进行2 h耐火极限试验后,钢板背面温度低于160 ℃;防火涂料在1 100 ℃高温热处理2 h后,抗压强度大幅增加至室温强度的5.8倍,达30.80 MPa;防火涂料基体的无定型地聚物相在800 ℃开始发生陶瓷化转变,1 100 ℃时生成的陶瓷相主要为钙长石、莫来石以及白榴石。  相似文献   
6.
石英玻璃相对于金属、晶体、陶瓷等大多数固体材料具有更小的机械振动能量损耗,是许多精密测量器件的首选材料。本文测试对比了四种类型(Ⅰ类、Ⅱ类、Ⅲ类和Ⅳ类)石英玻璃的振动能量损耗特性,从材料化学组分和结构缺陷方面分析了石英玻璃本征损耗的影响因素及作用机理。结果表明:Ⅰ类和Ⅱ类石英玻璃的本征损耗显著大于Ⅲ类和Ⅳ类石英玻璃,主要是由金属杂质含量高和气泡等级低造成的;羟基含量不是影响石英玻璃本征损耗的主要因素;表面损耗是石英玻璃器件振动能量损耗的主要来源之一,可以通过湿法刻蚀消除。  相似文献   
7.
沥青与集料的黏附性是沥青混合料水稳定性的关键影响因素,为定量分析沥青与集料之间的黏附性,采用表面自由能理论与改进水煮法分别进行评价。首先采用接触角测量试验测定了25 ℃条件下沥青、改性沥青、老化沥青与花岗岩、石灰岩、辉绿岩的表面能参数,并计算出不同沥青-集料系统的黏附功与剥落功,以黏附功与剥落功的绝对比值ER作为黏附性评价指标。同时以通过改进水煮法得出的沥青质量损失率F作为定量指标,对表面能理论试验结果加以验证。结果表明:掺入改性剂的90A沥青表面能减小了2.5%~6.2%,改性后的沥青-集料系统水稳定指标ER增加了1.9%~7.8%,黏附性增强,其中掺抗剥落剂的改善效果最好,沥青老化后ER值减小了4.3%~9.2%,黏附性减小。同类型沥青与不同种类集料的黏附性排序为沥青-石灰岩>沥青-辉绿岩>沥青-花岗岩,同种类集料与不同类型沥青的黏附性排序为90PA>90HC>90C≈90H>90A。通过延长水煮时间的改进水煮法得到的黏附性等级差异明显,其结果与表面能评价结果相同。评价指标ER与质量损失率F呈线性负相关,验证了表面能评价体系的可靠性。  相似文献   
8.
9.
针对平桥南区块高温、高矿化度井所用泡排剂效果不佳的问题,研制了适用于该区块的泡排剂。优选椰油酰胺丙基甜菜碱(CAB)、十二烷基二甲基氧化铵(OB)和羟丙基胍胶(Guar)作为原料,复配制得了二元复合型泡排剂COG;采用正交试验方法,分析了CAB、OB和Guar质量比对COG起泡性能的影响,并确定了最佳加量。室内试验评价了泡排剂COG的发泡性能、稳泡性能及抗温抗盐性能,在温度95 ℃、矿化度10×104 mg/L条件下,其综合性能明显优于现场常用的2种泡排剂。在平桥南区块3口井进行了现场试验,试验结果表明,泡排剂COG具有较好的排水增产效果,用后单井产气量比应用原有泡排剂提高了10%以上。研究结果表明,二元复合型泡排剂COG适用于平桥南区块页岩气井的泡沫排水,具有较好的推广应用价值。   相似文献   
10.
汪超  杨艳滨  熊伟  刘奋勇  丁光伟 《焊管》2022,45(2):64-68
为了研究L450M管线钢制管过程中机械扩径后母材开裂的原因,通过对断口进行宏观观察、微观分析以及钢板探伤,分析了管体机械扩径后母材开裂情况。结果显示,管体机械扩径后母材开裂部位以铁素体组织为主,含极少量的C元素,且并无其他元素成分。经分析,确定管体开裂是由于在连铸时冷钢掉入结晶器内未完全熔化、包裹在板坯内,经轧制而形成缺陷,最终导致管体开裂。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号