首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1070篇
  免费   612篇
  国内免费   16篇
电工技术   94篇
综合类   27篇
化学工业   56篇
金属工艺   3篇
机械仪表   18篇
建筑科学   7篇
矿业工程   10篇
能源动力   99篇
轻工业   2篇
水利工程   5篇
石油天然气   7篇
武器工业   2篇
无线电   49篇
一般工业技术   12篇
冶金工业   7篇
原子能技术   1篇
自动化技术   1299篇
  2023年   102篇
  2022年   13篇
  2021年   8篇
  2020年   188篇
  2019年   190篇
  2018年   145篇
  2017年   152篇
  2016年   181篇
  2015年   156篇
  2014年   185篇
  2013年   21篇
  2012年   26篇
  2011年   57篇
  2010年   55篇
  2009年   48篇
  2008年   17篇
  2007年   28篇
  2006年   23篇
  2005年   33篇
  2004年   12篇
  2003年   18篇
  2002年   10篇
  2001年   3篇
  2000年   10篇
  1999年   4篇
  1998年   1篇
  1996年   4篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1991年   1篇
  1989年   2篇
  1988年   1篇
排序方式: 共有1698条查询结果,搜索用时 31 毫秒
1.
This paper introduces a simple method for simulating highly anisotropic elastoplastic material behaviors like the dissolution of fibrous phenomena (splintering wood, shredding bales of hay) and materials composed of large numbers of irregularly-shaped bodies (piles of twigs, pencils, or cards). We introduce a simple transformation of the anisotropic problem into an equivalent isotropic one, and we solve this new “fictitious” isotropic problem using an existing simulator based on the material point method. Our approach results in minimal changes to existing simulators, and it allows us to re-use popular isotropic plasticity models like the Drucker-Prager yield criterion instead of inventing new anisotropic plasticity models for every phenomenon we wish to simulate.  相似文献   
2.
The alternating direction multiplier method (ADMM) is widely used in computer graphics for solving optimization problems that can be nonsmooth and nonconvex. It converges quickly to an approximate solution, but can take a long time to converge to a solution of high-accuracy. Previously, Anderson acceleration has been applied to ADMM, by treating it as a fixed-point iteration for the concatenation of the dual variables and a subset of the primal variables. In this paper, we note that the equivalence between ADMM and Douglas-Rachford splitting reveals that ADMM is in fact a fixed-point iteration in a lower-dimensional space. By applying Anderson acceleration to such lower-dimensional fixed-point iteration, we obtain a more effective approach for accelerating ADMM. We analyze the convergence of the proposed acceleration method on nonconvex problems, and verify its effectiveness on a variety of computer graphics including geometry processing and physical simulation.  相似文献   
3.
Fast and highly efficient enrichment and separation of glycoproteins is essential in many biological applications, but the lack of materials with high capture capacity, fast, and efficient enrichment/separation makes it a challenge. Here, a temperature‐responsive core cross‐linked star (CCS) polymer with boronate affinity is reported for fast and efficient enriching and separating of glycoproteins from biological samples. The temperature‐responsive CCS polymers containing boronic acid in its polymeric arms and poly(N‐isopropyl acrylamide) in its cross‐linked core are prepared using reversible addition‐fragmentation chain transfer polymerization via an “arm‐first” methodology. The soluble boronate polymeric arms of the CCS polymers provide a homogeneous reaction system and facilitate interactions between boronic acid and glycoproteins, which leads to a fast binding/desorption speed and high capture capacity. Maximum binding capacity of the prepared CCS polymer for horseradish peroxidase is determined to be 210 mg g?1, which can be achieved within 20 min. More interestingly, the temperature‐responsive CCS polymers exhibit rapid reversible thermal‐induced volume phase transition by increasing the temperature from 15 to 30 °C, resulting in a facile and convenient sample collection and recovery for the target glycoproteins. Finally, the temperature‐responsive CCS polymer is successfully applied to enrichment of low abundant glycoproteins.  相似文献   
4.
Event sequences and time series are widely recorded in many application domains; examples are stock market prices, electronic health records, server operation and performance logs. Common goals for recording are monitoring, root cause analysis and predictive analytics. Current analysis methods generally focus on the exploration of either event sequences or time series. However, deeper insights are gained by combining both. We present a visual analytics approach where users can explore both time series and event data simultaneously, combining visualization, automated methods and human interaction. We enable users to iteratively refine the visualization. Correlations between event sequences and time series can be found by means of an interactive algorithm, which also computes the presence of monotonic effects. We illustrate the effectiveness of our method by applying it to real world and synthetic data sets.  相似文献   
5.
Visual data analysis can be envisioned as a collaboration of the user and the computational system with the aim of completing a given task. Pursuing an effective system‐user integration, in which the system actively helps the user to reach his/her analysis goal has been focus of visualization research for quite some time. However, this problem is still largely unsolved. As a result, users might be overwhelmed by powerful but complex visual analysis systems which also limits their ability to produce insightful results. In this context, guidance is a promising step towards enabling an effective mixed‐initiative collaboration to promote the visual analysis. However, the way how guidance should be put into practice is still to be unravelled. Thus, we conducted a comprehensive literature research and provide an overview of how guidance is tackled by different approaches in visual analysis systems. We distinguish between guidance that is provided by the system to support the user, and guidance that is provided by the user to support the system. By identifying open problems, we highlight promising research directions and point to missing factors that are needed to enable the envisioned human‐computer collaboration, and thus, promote a more effective visual data analysis.  相似文献   
6.
This paper does two main contributions to 2D time-dependent vector field topology. First, we present a technique for robust, accurate, and efficient extraction of distinguished hyperbolic trajectories (DHT), the generative structures of 2D time-dependent vector field topology. It is based on refinement of initial candidate curves. In contrast to previous approaches, it is robust because the refinement converges for reasonably close initial candidates, it is accurate due to its adaptive scheme, and it is efficient due to its high convergence speed. Second, we provide a detailed evaluation and discussion of previous approaches for the extraction of DHTs and time-dependent vector field topology in general. We demonstrate the utility of our approach using analytical flows, as well as data from computational fluid dynamics.  相似文献   
7.
Humans are highly adept at walking in environments with foot placement constraints, including stepping-stone scenarios where footstep locations are fully constrained. Finding good solutions to stepping-stone locomotion is a longstanding and fundamental challenge for animation and robotics. We present fully learned solutions to this difficult problem using reinforcement learning. We demonstrate the importance of a curriculum for efficient learning and evaluate four possible curriculum choices compared to a non-curriculum baseline. Results are presented for a simulated humanoid, a realistic bipedal robot simulation and a monster character, in each case producing robust, plausible motions for challenging stepping stone sequences and terrains.  相似文献   
8.
Modern acquisition techniques generate detailed point clouds that sample complex geometries. For instance, we are able to produce millimeter-scale acquisition of whole buildings. Processing and exploring geometrical information within such point clouds requires scalability, robustness to acquisition defects and the ability to model shapes at different scales. In this work, we propose a new representation that enriches point clouds with a multi-scale planar structure graph. We define the graph nodes as regions computed with planar segmentations at increasing scales and the graph edges connect regions that are similar across scales. Connected components of the graph define the planar structures present in the point cloud within a scale interval. For instance, with this information, any point is associated to one or several planar structures existing at different scales. We then use topological data analysis to filter the graph and provide the most prominent planar structures. Our representation naturally encodes a large range of information. We show how to efficiently extract geometrical details (e.g. tiles of a roof), arrangements of simple shapes (e.g. steps and mean ramp of a staircase), and large-scale planar proxies (e.g. walls of a building) and present several interactive tools to visualize, select and reconstruct planar primitives directly from raw point clouds. The effectiveness of our approach is demonstrated by an extensive evaluation on a variety of input data, as well as by comparing against state-of-the-art techniques and by showing applications to polygonal mesh reconstruction.  相似文献   
9.
It is notoriously difficult for artists to control liquids while generating plausible animations. We introduce a new liquid control tool that allows users to load, transform, and apply precomputed liquid simulation templates in a scene in order to control a particle-based simulation. Each template instance generates control forces that drive the global simulated liquid to locally reproduce the templated liquid behavior. Our system is augmented with a variable proportion of temporary particles to help efficiently reproduce the templated liquid density, with fewer requirements on the surrounding environment. The resulting control strategy adds only a small computational overhead, leading to quick visual feedback for resolutions allowing interactive simulation. We demonstrate the robustness and ease of use of our method on various examples in 2D and 3D.  相似文献   
10.
Automatic synthesis of realistic gestures promises to transform the fields of animation, avatars and communicative agents. In off-line applications, novel tools can alter the role of an animator to that of a director, who provides only high-level input for the desired animation; a learned network then translates these instructions into an appropriate sequence of body poses. In interactive scenarios, systems for generating natural animations on the fly are key to achieving believable and relatable characters. In this paper we address some of the core issues towards these ends. By adapting a deep learning-based motion synthesis method called MoGlow, we propose a new generative model for generating state-of-the-art realistic speech-driven gesticulation. Owing to the probabilistic nature of the approach, our model can produce a battery of different, yet plausible, gestures given the same input speech signal. Just like humans, this gives a rich natural variation of motion. We additionally demonstrate the ability to exert directorial control over the output style, such as gesture level, speed, symmetry and spacial extent. Such control can be leveraged to convey a desired character personality or mood. We achieve all this without any manual annotation of the data. User studies evaluating upper-body gesticulation confirm that the generated motions are natural and well match the input speech. Our method scores above all prior systems and baselines on these measures, and comes close to the ratings of the original recorded motions. We furthermore find that we can accurately control gesticulation styles without unnecessarily compromising perceived naturalness. Finally, we also demonstrate an application of the same method to full-body gesticulation, including the synthesis of stepping motion and stance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号