首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1111篇
  免费   164篇
  国内免费   128篇
电工技术   29篇
综合类   133篇
化学工业   149篇
金属工艺   5篇
机械仪表   33篇
建筑科学   191篇
矿业工程   91篇
能源动力   31篇
轻工业   7篇
水利工程   199篇
石油天然气   10篇
武器工业   2篇
无线电   51篇
一般工业技术   165篇
冶金工业   22篇
原子能技术   4篇
自动化技术   281篇
  2024年   2篇
  2023年   25篇
  2022年   47篇
  2021年   52篇
  2020年   56篇
  2019年   45篇
  2018年   35篇
  2017年   57篇
  2016年   44篇
  2015年   59篇
  2014年   73篇
  2013年   59篇
  2012年   67篇
  2011年   107篇
  2010年   91篇
  2009年   96篇
  2008年   95篇
  2007年   100篇
  2006年   71篇
  2005年   56篇
  2004年   51篇
  2003年   45篇
  2002年   25篇
  2001年   14篇
  2000年   11篇
  1999年   7篇
  1998年   2篇
  1997年   2篇
  1996年   2篇
  1991年   1篇
  1989年   2篇
  1986年   2篇
  1979年   2篇
排序方式: 共有1403条查询结果,搜索用时 15 毫秒
1.
《Soils and Foundations》2022,62(6):101222
This work addresses the problem of the loading capacity of an anchor plate coupled with a steel wire mesh in soil retaining applications. The interaction mechanism between the flexible mesh facing, the underlying soil layer and the plate is studied starting from the results of several laboratory punch tests involving both the plate and the mesh only, and the whole soil-mesh-plate system. The experimental tests have been reproduced by adopting a 3D discrete element model where also the wire mesh is discretized as an assembly of interconnected nodal particles. The interaction between these particles is ruled by elasto-plastic tensile force–displacement laws in which a distortion is introduced in a stochastic manner to account for the wires’ geometrical irregularities. The mesh model is then validated with reference to a set of punch tests in which the shape and size of the punching element as well as the nominal wire diameter were varied. Subsequently, the model is extended to a punch against soil test configuration permitting an insight into the nontrivial local mechanism between the mesh facing and the underlying granular layer. The good agreement between the numerical predictions and the experimental observations at the laboratory scale allowed us to extend the model towards more realistic field conditions for which the role of the mesh panel boundary conditions, the mesh mechanical properties, the soil mechanical properties and the anchor plate geometry is investigated.  相似文献   
2.
The discrete element method (DEM) has been extensively adopted to investigate many complex geotechnical related problems due to its capability to incorporate the discontinuous nature of granular materials. In particular, when simulating large deformations or distortion of soil (e.g. cavity expansion), DEM can be very effective as other numerical solutions may experience convergence problems. Cavity expansion theory has widespread applications in geotechnical engineering, particularly to the problems concerning in situ testing, pile installation and so forth. In addition, the behaviour of geomaterials in a macro-level is utterly determined by microscopic properties, highlighting the importance of contact models. Despite the fact that there are numerous contact models proposed to mimic the realistic behaviour of granular materials, there are lack of studies on the effects of these contact models on the soil response. Hence, in this study, a series of three-dimensional numerical simulations with different contact constitutive models was conducted to simulate the response of sandy soils during cylindrical cavity expansion. In this numerical investigation, three contact models, i.e. linear contact model, rolling resistance contact model, and Hertz contact model, are considered. It should be noted that the former two models are linear based models, providing linearly elastic and frictional plasticity behaviours, whereas the latter one consists of nonlinear formulation based on an approximation of the theory of Mindlin and Deresiewicz. To examine the effects of these contact models, several cylindrical cavities were created and expanded gradually from an initial radius of 0.055 m to a final radius of 0.1 m. The numerical predictions confirm that the calibrated contact models produced similar results regarding the variations of cavity pressure, radial stress, deviatoric stress, volumetric strain, as well as the soil radial displacement. However, the linear contact model may result in inaccurate predictions when highly angular soil particles are involved. In addition, considering the excessive soil displacement induced by the pile installation (i.e. cavity expansion), a minimum distance of 11a (a is the cavity radius) is recommend for practicing engineers to avoid the potential damages to the existing piles and adjacent structures.  相似文献   
3.
沈文豪  张亚新  宋江 《过程工程学报》2020,20(10):1147-1155
针对空气净化器能耗高的问题,使用离散元方法(DEM)在吸附滤网中建立随机堆积柱形活性炭模型,采用计算流体力学(CFD)方法对空气净化器内部流场进行数值模拟,在模拟与实验验证的基础上,考察了压降最小、流场最均匀的吸附滤网结构。结果表明,空气净化器压降主要发生在轴向,活性炭吸附滤网中回流、沟流现象严重,流体阻力是其他两种滤网的3倍。边数对多边形填充孔结构吸附滤网内压降与流场均匀性无影响,当孔结构改为圆形时,压降减小约52 Pa,节能18.4%(49 W);当孔直径由8 mm增至12 mm,压降减小约48 Pa,节能19.4%(45 W);滤网间距对空气净化器压降无影响,圆形、小孔径的吸附滤网内流场最均匀。  相似文献   
4.
《Advanced Powder Technology》2021,32(9):3189-3206
The awareness of dust emissions is crucial regarding safe industrial processes, environmental protection and health care. For this purpose, closely linked experimental and numerical investigations are performed. This work presents the results of an experimental study which is used for the calibration of a modelling framework based on the Discrete Element Method (DEM) coupled with Computational Fluid Dynamics (CFD) and applied for the calculation of dust emissions for predictive purposes. The key objective of the approach is to come up with a dust source term which enables to describe and to quantify the release of particle emissions. For the presented experimental study, a wind tunnel and a rotating drum setup, which cover various handling types of bulk materials, are used in order to gain data about parameters having an impact on the dust release. The special feature of the investigations is the use of a reference test bulk material which represents a bulk material in its generally main fractions, the fine and the coarse material, keeping the discrepancy between experiments and simulations low. With the help of the experimental results the calibration of the simulation model was carried out and followed by a comparison.  相似文献   
5.
张庆弢  毕超 《中国塑料》2022,36(6):87-91
基于CFD?DEM耦合方法,研究了颗粒在水室内的流动状态,分析了不同刀盘转速、粒子水通入量和水室出口角度对造粒过程的影响,发现提高刀盘转速、增加粒子水通入量和水室出口倾斜一定的角度都有利于水室内颗粒的排出。进一步研究了颗粒与碎屑在水室内的流动,发现在水室出口处二者的流动基本呈现出一定的分离角度。  相似文献   
6.
The particle based Discrete Element Method (DEM) can be applied to examine comminution processes. In this study, a DEM framework has been extended to model particle breakage without mass loss. After a breakage event occurs, spherical particles, as often considered in the DEM, are replaced by size reduced spherical fragments. During the following time steps, the fragments grow to their desired sizes, so that the mass loss can be counterbalanced. Previously defined overlaps with adjacent unbroken and broken particles (fragments) as well as walls are allowed. The breakage model has been realized in a parallelized DEM framework because comminution processes are often attributed to large numbers of particles and by parallelization the computational time can be reduced efficiently. An oedometer (one-dimensional compression in axial direction of a confined particle bed) has been modelled to investigate the parallelization efficiency and the influence of the permitted overlaps during the growth process on the growth duration. A simplified roller mill has been considered to examine the applicability of the breakage procedure considering parallelization. The results show that parallelization reduces computational time considerably. The breakage procedure is suitable to model comminution processes involving even densely packed particle systems and is superior to existing approaches.  相似文献   
7.
Additive manufacturing (AM) has attracted much attention worldwide in various applications due to its convenience and flexibility to rapidly fabricate products, which is a key advantage compared to the traditional subtractive manufacturing. This discrete element method (DEM) study focusses on the impact of particle polydispersity during the particle spreading process on parameters that affect the quality of the final product, like packing and bed surface roughness. The particle systems include four lognormal particle size distribution (PSD) widths, which are benchmarked against the monodisperse system with the same mean particle diameter. The results reveal that: (i) the solid volume fraction of the initial packed particle bed in the delivery chamber increases then plateaus as the PSD width increases; (ii) regardless of PSD width, the solid volume fraction of the particle bed increases with spreading layer height before compression, but decreases with layer height after compression; (iii) the bed surface roughness increases with PSD width or layer height both before and after the compression of the spreading layer; (iv) the extent of increase in solid volume fraction during compression is correlated with the extent of decrease in bed surface roughness; and (v) the broader PSDs exhibit larger fluctuations of solid volume fraction of the particle bed and bed surface roughness due to greater variability in the arrangement of particles of different sizes. The results here have important implications on the design and operation of particle-based AM systems.  相似文献   
8.
针对EDEM自动划分网格较稀疏问题,采用Hypermesh划分仿真模型网格,利用Herz-Mindlin接触理论的Archard磨损模型对转载溜槽磨损问题进行仿真,在网格单元上提取出漏斗和溜管衬板的接触能量和磨损量,分析了磨损量与接触能量的关系。假设转载溜槽衬板磨损深度为物料与溜槽衬板的使用时间为线性函数,根据现场衬板磨损量的测量值,将衬板的磨损系数关系的看作隐式的单变量方程,应用EDEM软件的仿真结果求解出磨损系数的标定值。分析了漏斗和溜管的磨损机理。该方法可用于转载溜槽的磨损预测。  相似文献   
9.
All-solid-state batteries constitute a very promising energy storage device. Two very important properties of these battery cells are the ionic and the electrical conductivity, which describe the ion and the electron transport through the electrodes, respectively. In this work, a numerical method is presented to model the electrical conductivity, considering the outcome of discrete-element method simulations and the intrinsic conductivities of both the active material particles and the conductive additive particles. The results are calibrated and validated with the help of experimental data of real manufactured electrodes. The tortuosity, which strongly influences the ionic conductivity, is also presented for the analyzed electrodes, taking their microstructure into account.  相似文献   
10.
This article investigated the fluidization of sands and small Geldart A biomass mixtures. The mixture fluidized like Geldart A type particles with a uniform bed expansion regime before bubbling. The video recorded color distance between pure sands and sands–biomass mixtures was used to estimate the sands–biomass mixing. The coarse-grained computational fluid dynamics–discrete element method with a hybrid drag model which couples the Syamlal–O'Brien drag and a filtered drag can capture the mixing while the simulation with Gidaspow drag predicted a segregated bed. The simulations were further validated with experimental measured pressure drops. The time averaged pressure drop equals the weight of the bed material, however, its fluctuation is about three times of the bed material fluctuation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号