首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7860篇
  免费   196篇
  国内免费   159篇
电工技术   365篇
技术理论   1篇
综合类   139篇
化学工业   832篇
金属工艺   397篇
机械仪表   1121篇
建筑科学   471篇
矿业工程   44篇
能源动力   980篇
轻工业   79篇
水利工程   26篇
石油天然气   35篇
武器工业   24篇
无线电   654篇
一般工业技术   926篇
冶金工业   295篇
原子能技术   54篇
自动化技术   1772篇
  2024年   4篇
  2023年   108篇
  2022年   160篇
  2021年   207篇
  2020年   191篇
  2019年   162篇
  2018年   164篇
  2017年   238篇
  2016年   258篇
  2015年   313篇
  2014年   498篇
  2013年   581篇
  2012年   395篇
  2011年   659篇
  2010年   426篇
  2009年   504篇
  2008年   454篇
  2007年   501篇
  2006年   438篇
  2005年   342篇
  2004年   284篇
  2003年   302篇
  2002年   209篇
  2001年   126篇
  2000年   127篇
  1999年   106篇
  1998年   102篇
  1997年   79篇
  1996年   72篇
  1995年   50篇
  1994年   40篇
  1993年   24篇
  1992年   23篇
  1991年   20篇
  1990年   17篇
  1989年   13篇
  1988年   9篇
  1987年   2篇
  1986年   2篇
  1984年   2篇
  1983年   1篇
  1981年   1篇
  1974年   1篇
排序方式: 共有8215条查询结果,搜索用时 15 毫秒
1.
In this work, the SnS2 nanoflowers (SnS2 NFs) were solvothermally prepared in the solvent of ethanol, while SnS2 nanoplates (SnS2 NPs) were obtained through the identical conditions except for the solvent of water. The flowers were assembled with numerous nanosheets with very thin thickness, and the NPs exhibited hexagonal shape. When used as the battery-type electrode material for supercapacitors, the SnS2 NFs delivered a specific capacity of as high as 264.4 C g?1 at 1 A g?1, which was higher than the 201.6 C g?1 of SnS2 NPs. Furthermore, a hybrid supercapacitor (HSC) was assembled with the SnS2 as positive electrode and activated carbon (AC) as negative electrode, respectively. The SnS2 NFs//AC HSC exhibited a high energy density of 28.1 Wh kg?1 at 904.3 W kg?1, which was higher than the 24.2 Wh kg?1 at 844.3 W kg?1 of SnS2 NPs//AC HSC. Especially, when the power density was enhanced to the highest value of 8666.8 W kg?1, the NFs-based device could still hold 20.4 Wh kg?1. In addition, both HSC devices showed an excellent cycling stability after 5000 cycles at 5 A g?1. The present method is simple and can be extended to the preparation of other transition metal sulfides (TMSs)-based electrode materials with brilliant electrochemical performance for supercapacitors.  相似文献   
2.
In order to improve the power generation efficiency of fuel cell systems employing liquid fuels, a hybrid system consisting of solid oxide fuel cell (SOFC) and proton exchange membrane fuel cell (PEMFC) is proposed. Utilize the high temperature heat generated by SOFC to reform as much methanol as possible to improve the overall energy efficiency of the system. When SOFC has a stable output of 100 kW, the amount of hydrogen after reforming is changed by changing the methanol flow rate. Three hybrid systems are proposed to compare and select the best system process suitable for different situations. The results show that the combined combustion system has the highest power generation, which can reach 350 kW and the total electrical efficiency is 57%. When the power of the tail gas preheating system is 160 kW, the electrical efficiency can reach 75%. The PEM water preheating system has the most balanced performance, with the electric power of 300 kW and the efficiency of 66%.  相似文献   
3.
This paper presents a numerical study on the load-bearing performance of reinforced slopes under footing load using a finite element limit analysis (FELA) method where a non-associated flow rule is assumed in the analysis. The method was validated against results from full-scale model tests and a limit equilibrium (LE) analytical method. A series of parametric analyses was subsequently carried out to examine the influences that the soil dilation angle, footing location, and reinforcement design (i.e. length, tensile strength, and vertical spacing) could have on the load-bearing performance of reinforced slopes. Results indicate that dilation angle has a significant influence on the predicted magnitudes of bearing capacity, slope deformation, and mobilized reinforcement load. The predicted values of bearing capacity using the FELA are smaller than those from the Meyerhof's analytical method for unreinforced semi-infinite foundation, especially for larger friction angle values. Additionally, the ultimate bearing capacity of the slope and its corresponding horizontal deformation increase with the reinforcement tensile strength. Finally, the slip planes under the applied footing load are found to be y-shaped and primarily occur in the upper half of the slope.  相似文献   
4.
《Ceramics International》2022,48(4):4710-4721
In this study, AA5083 sheets were reinforced with four different hybrid nanoparticles by friction stir processing (FSP) for the development of surface nanocomposites used in advanced engineering applications. The present research focused on improving the properties and tribological behaviour of AA5083 alloy surfaces, including novel hybrid nanoparticles and the intermetallic phase formed during FSP. A tribometer tester with a constant normal load was used to examine the tribological performance of the hybrid composites. After the wear test, a surface profiler inspector was used to analyse the morphology and surface roughness of the examined materials. The Vickers micro-hardness of the base metal and the manufactured composites were measured. During FSP, a new intermetallic phase of AlV3 was successfully formed at 300–400 °C in the hybrid nanocomposites containing VC particles. The reinforcements resulted in additional grain refining than FSP. The AA5083/Ta2C–Al2O3 exhibited the greatest grain refinement, a sixty-fold reduction in grain size compared to that of the base alloy. The results revealed that the hybrid nanocomposites containing VC particles demonstrated the most significant microhardness values inside the stirred zone as a result of the presence of the AlV3 phase, which was increased by 25–30%. Moreover, the mechanical properties were significantly improved for all manufactured nanocomposites. The tensile strength was increased by 28% through the hybridisation of AA5083 using a hybrid of VC-GNPs. The dispersion of Ta2C-GNPs and VC-GNPs in the matrix led to excellent interfacial adhesion, resulting in an enhancement in the mechanical properties. The AA5083/VC-GNPs surface composite outperformed other manufactured composites regarding wear resistance. In addition, due to GNPs soft nature, it reduced the coefficient of friction (COF) of the manufactured composites by 20–25% compared to other reinforcements.  相似文献   
5.
Power conversion efficiency (PCE) and stability are two important properties of perovskite solar cells (PSCs). Particularly, defects in the perovskite films could cause the generation of trap states, thereby increasing the nonradiative recombination. To address this issue, suitable dopants can be incorporated to react with non-bonded atoms or surface dangling bonds to passivate the defects. Herein, we introduced TiI4 into CH3NH3PbI3 (MAPbI3) film and obtained a dense and uniform morphology with large crystal grains and low defect density. The champion cell based on 0.5% TiI4-doped MAPbI3 achieved a PCE as high as 20.55%, which is superior to those based on pristine MAPbI3 (17.64%). Moreover, the optimal solar cell showed remarkable stability without encapsulation. It retained 88.03% of its initial PCE after 300 h of storage in ambient. This work demonstrates TiI4 as a new and effective passivator for MAPbI3 film.  相似文献   
6.
《Ceramics International》2021,47(21):29598-29606
A hybrid nanocomposite comprising nanosized ZrO2 and graphene nanoplatelet (GNP)-reinforced Cu matrix was synthesised via powder metallurgy. The influence of sintering temperature and GNP content on the electrical and mechanical behaviour of the Cu–ZrO2/GNP nanocomposite was investigated. The ZrO2 concentration was fixed at 10% for all the composites. Upon increasing the GNP concentration up to 0.5%, a significant improvement was observed in the compressive strength, microhardness, and electrical conductivity of the composite. Furthermore, the properties were significantly improved by increasing the sintering temperature from 900 to 1000 °C. The compressive strength, hardness, and electrical conductivity of Cu–10%ZrO2/0.5%GNP were higher than those of the Cu–ZrO2 nanocomposite by 60, 21, and 23.8%, respectively. This improvement in the mechanical properties is because of the decrease in the crystallite size and dislocation spacing, which increases the dislocation density, thereby increasing the impedance towards dislocation movement. The lower stacking fault energy of the hybrid nanocomposites enables easier electron transfer within and between the Cu grains, resulting in an improved electrical conductivity. The enhancement in strength and electrical conductivity were aided by the GNPs and ZrO2 nanoparticles that were dispersed widely in the Cu matrix.  相似文献   
7.
《Ceramics International》2022,48(17):25020-25033
Herein, we have developed a novel hybrid material based on NiCo2S4 (NCS), halloysite nanotubes (HNTs), and carbon as promising electrodes for supercapacitors (SCs). Firstly, mesoporous NCS nanoflakes were prepared by co-precipitation method followed by physically mixing with HNTs and carbon, and screen printed on nickel foam. After ultrasonication, a uniform distribution of the Carbon/HNTs complex was observed, which was confirmed by surface morphological analysis. When used as electrode material, the NCS/HNTs/C hybrid displayed a maximum specific capacity of 544 mAh g?1 at a scan rate of 5 mV s?1. Later, a solid-state hybrid SCs was fabricated using activated carbon (AC) as the negative and NCS/HNTs/C as the positive electrode (NCS/HNTs/C//AC). The device delivers a high energy density of 42.66 Wh kg?1 at a power density of 8.36 kW kg?1. In addition, the device demonstrates long-term cycling stability. Furthermore, the optimized NCS, NCS/HNTs, and NCS/HNTs/C nanocomposites also presented superior hydrogen evolution reaction (HER) performance of 201, 169, and 116 mV in the acidic bath at a current density of 10 mA cm?2, respectively. Thus, the synthesis of NCS/HNTs/C nanocomposite as positive electrodes for hybrid SCs opens new opportunities for the development of next-generation high energy density SCs.  相似文献   
8.
The following work treat the prediction of the production rate and purity level of hydrogen produced by an alkaline electrolyzer fed by a renewable source in a hybrid energy system HES in the locality of Adrar in the south of Algeria. This work is made for different renewable energy penetration rate from 0% to 60% of conventional power (Genset generator). The cell electrolyzer model permits to predict the production rate of hydrogen with accuracy, according to operating parameters, climatic conditions and the load of the site of Adrar. The study permits to introduce a model of hydrogen purity level based on the operating parameters and the power supplying the alkaline electrolyzer. It also shows that the great influence of the intermittent energy supplying the electrolyzer on the production rate and purity level of hydrogen. The prediction of production rate and purity level by the models allow to obtain a distribution and storage of hydrogen produced according to predetermined selection criteria imposed by the operator.In the process of electrolysis, the oxygen is considered as by-product of the hydrogen production. The amount and purity level were estimated jointly.An HES-H2 production program under MATLAB®/SIMULINK® has been developed to simulate the hourly evolution of the production rate and purity level of hydrogen and oxygen produced by an electrolyzer for different penetration rate of renewable energies in an HES.  相似文献   
9.
In this work we present a scenario of wind and solar energy production and seasonal energy storage producing Hydrogen in Djanet (East-South of Algeria). In addition we suppose assume the use of a set of fuel cells which are connected to the grid to provide a supply of energy when needed afterwards. The aim of this primary study is giving an alternative solution for the electric production in Djanet, which is mainly based on diesel generator. For that we made an investigation to highlight the potential of renewable energy production in this region. To ascertain feasibility of one hybrid system, we made energetic assessment considering the real climatic conditions of Djanet.  相似文献   
10.
This paper proposes an optimal design procedure for a green building equipped with renewable energy, energy storages, and proton exchange membrane fuel cells (PEMFCs). First, we introduce the hybrid power system of the green building and construct a simulation model using Matlab/SimPowerSystem?. The model parameters are tuned so that the system responses can be estimated without extensive experiments in the optimization processes. Second, we define the cost and reliability indexes to optimize the system design using three steps: component selection, component sizing, and power management (PM) adjustment. We further define the safety index to evaluate the system's sustainability under extreme conditions when no renewable energy is available. Last, we apply the proposed procedures to the green building and demonstrate the benefits of the optimal design. The proposed method can be directly applied to develop customized hybrid power systems in the future.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号