首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   144212篇
  免费   13190篇
  国内免费   7003篇
电工技术   10827篇
技术理论   3篇
综合类   10777篇
化学工业   20857篇
金属工艺   6521篇
机械仪表   10211篇
建筑科学   15883篇
矿业工程   11077篇
能源动力   9828篇
轻工业   8051篇
水利工程   2878篇
石油天然气   23628篇
武器工业   1567篇
无线电   5602篇
一般工业技术   9534篇
冶金工业   6924篇
原子能技术   1534篇
自动化技术   8703篇
  2024年   172篇
  2023年   1584篇
  2022年   3723篇
  2021年   4664篇
  2020年   4955篇
  2019年   3581篇
  2018年   3137篇
  2017年   3961篇
  2016年   4402篇
  2015年   4778篇
  2014年   8997篇
  2013年   8431篇
  2012年   11397篇
  2011年   11987篇
  2010年   8095篇
  2009年   7937篇
  2008年   7098篇
  2007年   9190篇
  2006年   9023篇
  2005年   7662篇
  2004年   6417篇
  2003年   5729篇
  2002年   4856篇
  2001年   4346篇
  2000年   3619篇
  1999年   2914篇
  1998年   2249篇
  1997年   1930篇
  1996年   1519篇
  1995年   1330篇
  1994年   1134篇
  1993年   705篇
  1992年   619篇
  1991年   486篇
  1990年   381篇
  1989年   362篇
  1988年   207篇
  1987年   159篇
  1986年   107篇
  1985年   101篇
  1984年   67篇
  1983年   46篇
  1982年   47篇
  1981年   79篇
  1980年   64篇
  1979年   31篇
  1977年   11篇
  1964年   8篇
  1959年   16篇
  1951年   16篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
《工程爆破》2022,(2):76-78
在较为复杂的环境下,爆破拆除钢筋混凝土氧化铝储槽。该储槽自重大、呈圆形,内有4根立柱支撑下料漏斗。为使储槽顺利定向倒塌,通过爆破方案选择、参数确定,采取梯形切口和预处理以及安全防护和减振措施,使储槽爆破拆除获圆满成功。  相似文献   
2.
This study assesses a sustainable solution to greenhouse gases (GHGs) mitigation using constructed wetland-microbial fuel cells (CW-MFC). Roots of wetland plant Acorus Calamus L. are placed in biological anode to better enable anode microorganisms to obtain rhizosphere secretion for power improvement. Three selected cathode materials have a large difference in GHG emissions, and among them, carbon fiber felt (CFF) shows the lowest emissions of methane and nitrous oxide, which are 0.77 ± 0.04 mg/(m2·h) and 130.78 ± 13.08 μg/(m2·h), respectively. The CFF CW-MFC achieves the maximum power density of 2.99 W/m3. As the influent pH value is adjusted from acidic to alkaline, the GHGs emissions are reduced. The addition of Ni inhibits GHGs emission but decreases the electricity, the power density is reduced to 1.09 W/m3, and the methane and nitrous oxide emission fluxes decline to 0.20 ± 0.04 mg/(m2·h) and 15.49 ± 1.86 μg/(m2·h), respectively. Low C/N ratio reduces methane emission, while high C/N ratio effectively inhibits nitrous oxide emission. At the influent pH 8 and C/N = 5:1, the methane emission flux is approximately 10.60 ± 0.27 mg/(m2·h), and the nitrous oxide emission flux is only 10.90 ± 1.10 μg/(m2·h). Based on the above experimental results by controlling variable factors, it is proposed that CW-MFC offers an environment-friendly solution to regulate GHG emissions.  相似文献   
3.
Numerical simulations are performed to investigate the real gas effects on shock/expansion fan interaction. Initial perfect gas simulations at low enthalpy capture the flow structures efficiently and outcomes are found to have excellent agreement with the analytical calculations. Furthermore, the simulations with the real gas solver for different enthalpies showed that the variation in enthalpy significantly changes the flow structures. It is observed that an increase in enthalpy leads to a decrease and increase in the postshock and postexpansion fan Mach numbers, respectively. Another important observation is the decrement in the peak pressure ratio with an increment in the enthalpy. These effects are noted to be more pronounced for Mars's environment due to the higher dependency of specific heat on temperature.  相似文献   
4.
MgB2 superconductor pellets were synthesized through Mg gas infiltration method using nanosized- and microsized B powders. There was a marked difference in the superconducting properties of the two samples, particularly in the pinning force and dominant pinning mechanism. The microstructures of the samples were observed using HR-TEM and STEM-HAADF, and the results showed that the primary reason for the difference in the superconducting properties is the distribution of the nanosized second-phase particle MgO. Additionally, a feasible reaction model for the Mg gas infiltration method was established. Compared to the Mg liquid infiltration method, the gas infiltration showed better penetrability ability with a small amount of residual Mg. This study presents a novel synthesis process to fabricate an MgB2 pellet with superior density and superconducting properties. This method can be used in multiple applications such as superconducting bearings, compact superconductor magnets, and magnetic shielding.  相似文献   
5.
A wide range of dangerous and special tasks have witnessed the applications of wall-climbing robots, but they still cannot adapt well torough or sloping walls. This paper proposes a 6-DOF (degree of freedom) humanoid wall-climbing robot (HWCR) based on the principle of negative pressure suction. HWCR has the advantages of flexible adsorption feet, strong adaptability, strong anti-subversion performance, and high friction to the wall. We deduce mechanics formulas and carry out a parametric design of the foot structure so that it can meet the requirement of robot wall climbing. We use Fluent to analyze the flow field of the adsorption foot and determine the motor speed that can provide a reliable adsorption force. Using the D-H matrix to plan gait, we also design a compound cycloid-based foot trajectory to reduce the impact between the HWCR and the wall. Experiments on the uneven wall and sloping wall show that the vehicle can walk with an ideal gait, and the resistance value of the servo on each joint is much lower than the critical value, which ensures the smooth movement of the HWCR.  相似文献   
6.
Hydrogen produced from renewable resources is one of the cleanest fuels and could be used to store intermittent solar, wind and other energies. The main concern about using hydrogen is its hazards, such as high storage pressure, wide-range flammability, low mass density, and high diffusion. This study investigated the hazards of compressed hydrogen storage by developing a CFD model to understand the gas dispersion behaviour. The model was validated using the past experimental data and showed a good agreement, which could demonstrate the diffusion characteristics and gas stratification of a buoyant gas. A case study of an accidental release of compressed hydrogen from a storage tank was investigated to evaluate the risk of a hydrogen plant. A mathematical model of the jet spill was used to account for the choking effect from a high-pressure release to ensure the input velocity in CFD simulation is suitable for modelling gas dispersion using verified spatial and temporal scales, then the simulation results were used as inputs of vapour cloud explosions (VCEs) to investigate the potential overpressure effect. It was found the CFD model could predict a more reasonable flammable gas amount in cloud than using the bulk hydrogen release rate. The safety distance based on the overpressure prediction was reduced by 35%. The method proposed in this study can provide more validity for the consequence analysis as part of risk assessment.  相似文献   
7.
The present study investigates the combined influence of Channel to Rib Width (CRW) ratio and clamping pressure on the structure and performance of High Temperature-Polymer Electrolyte Membrane Fuel Cell (HT-PEMFC) using a three-dimensional numerical model developed previously. It also considers the impact of interfacial contact resistance between the Gas Diffusion Layer (GDL) and Bipolar Plate (BPP). The structural analysis of the single straight channel HT-PEMFC geometry shows that the von-Mises stress greatly increases in the GDL under the ribs as the CRW ratio increases resulting in considerably high deformation. The cell performance analysis depicts the significance of ohmic resistance and concentration polarization for different CRW ratios, particularly at higher operating current densities. However, in low to medium current density regions, the CRW ratio has little influence on cell performance. A substantial impact on the species, overpotential, and current distributions is observed. The findings also reveal that the CRW ratio significantly affects the temperature distribution in the cell.  相似文献   
8.
The plasma spray technique was well proven in producing metal oxide based gas sensors in the last two decades using different powder feedstocks. However, limited research was made to fabricate hydrogen gas sensor from tin oxide layer coated over tungsten oxide layer. This paper attempts to interpret the hydrogen gas sensing performances of plasma sprayed coating derived by depositing tin oxide layer over tungsten oxide (SnO2/WO3) layer. Plasma sprayed SnO2/WO3 sensor showed maximum response of 90% at 150 °C in contrast to stand-alone WO3 (89% at 350 °C) and stand-alone SnO2 (89% at 250 °C). The lower operating temperature of SnO2/WO3 sensor without compromising gas response was attributed to the WO3–SnO2 hetero-junction. SnO2/WO3 sensor showed selective sensing towards hydrogen with respect to carbon monoxide and methane gases. This sensor also possessed repeatable characteristics after 39 days from the initial measurement. In a nut-shell, plasma spayed SnO2/WO3 sensor showed stability of base resistance, repeatability after successive response and recovery cycles, selective sensing towards 500 ppm H2 with significant magnitude of gas response of 90%, response time of 35 s and recovery time of 269 s at a temperature of 150 °C.  相似文献   
9.
为研究既有线有砟轨道路基的翻浆冒泥机理,自主研发了一套能够模拟循环荷载–湿化耦合作用的模型试验系统。模型试样直径500 mm,由厚度分别为350 mm的路基土和200 mm的道砟组成,整个试样在高强度透明有机玻璃模型筒中制备完成。模型试验系统配备有监测荷载、位移、体积含水率和孔隙水压力的4种传感器,并通过高清相机对颗粒迁移过程进行图像捕捉。基于所研发的试验系统,针对辛泰铁路典型翻浆冒泥病害路段土样,开展翻浆冒泥模型试验。试验结果表明:动孔隙水压力是导致翻浆冒泥病害产生的关键因素。随着体积含水率的增加,动孔隙水压力引起的颗粒迁移量逐渐增加;在饱和状态下,会引起大量颗粒迁移,翻浆冒泥现象显著。试验结束时,道砟污染指数达到25%,在实际工程中已严重影响铁路的正常运营,有必要对污染道砟进行换填。  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号