首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1735篇
  免费   480篇
  国内免费   20篇
电工技术   2篇
综合类   39篇
化学工业   1602篇
金属工艺   32篇
机械仪表   19篇
建筑科学   23篇
矿业工程   1篇
能源动力   5篇
轻工业   133篇
水利工程   1篇
石油天然气   26篇
无线电   49篇
一般工业技术   300篇
冶金工业   2篇
自动化技术   1篇
  2024年   18篇
  2023年   39篇
  2022年   32篇
  2021年   138篇
  2020年   115篇
  2019年   74篇
  2018年   108篇
  2017年   102篇
  2016年   97篇
  2015年   129篇
  2014年   136篇
  2013年   134篇
  2012年   115篇
  2011年   102篇
  2010年   89篇
  2009年   97篇
  2008年   101篇
  2007年   103篇
  2006年   107篇
  2005年   88篇
  2004年   80篇
  2003年   85篇
  2002年   54篇
  2001年   33篇
  2000年   15篇
  1999年   10篇
  1998年   4篇
  1997年   10篇
  1996年   7篇
  1995年   4篇
  1994年   2篇
  1993年   2篇
  1992年   3篇
  1990年   1篇
  1983年   1篇
排序方式: 共有2235条查询结果,搜索用时 93 毫秒
1.
The degradation behavior of implants is significantly important for bone repair. However, it is still unprocurable to spatiotemporally regulate the degradation of the implants to match bone ingrowth. In this paper, a magneto-controlled biodegradation model is established to explore the degradation behavior of magnetic scaffolds in a magnetothermal microenvironment generated by an alternating magnetic field (AMF). The results demonstrate that the scaffolds can be heated by magnetic nanoparticles (NPs) under AMF, which dramatically accelerated scaffold degradation. Especially, magnetic NPs modified by oleic acid with a better interface compatibility exhibit a greater heating efficiency to further facilitate the degradation. Furthermore, the molecular dynamics simulations reveal that the enhanced motion correlation between magnetic NPs and polymer matrix can accelerate the energy transfer. As a proof-of-concept, the feasibility of magneto-controlled degradation for implants is demonstrated, and an optimizing strategy for better heating efficiency of nanomaterials is provided, which may have great instructive significance for clinical medicine.  相似文献   
2.
Blend films of two types (I and II) were prepared by mixing Antheraea mylitta silk fibroin (AMF) and gelatin solution in various blend ratios via the solution casting method. Two different crosslinkers, namely glutaraldehyde and genipin, were used during blend preparation. The structural characteristics and thermal properties of the blend films were examined by Fourier transform infrared (FTIR) spectroscopy, X‐ray diffraction (XRD), Thermogravimetric analysis (TGA) and Diffrential scanning calorimetery (DSC). The FTIR spectra showed conformational alterations in type I blend films while type II films attained high β‐sheet crystallinity. The XRD diffractograms presented a high degree of crystallinity in type II blend films compared to type I, which showed an almost amorphous structure. Further, thermal and biological studies were conducted on type II films. According to the TGA thermograms, the degradation temperature of the crosslinked blend films shifted compared to pure gelatin and pure AMF films. Partial miscibility of the two components was indicated by DSC thermograms of the blends. The high water uptake capacity of type II blend films was found to imitate hydrogel behaviour. The blend films did not show any toxicity in 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyl tetrazolium bromide (MTT) assay and supported L929 fibroblast cell spreading and proliferation. The biodegradation of the blend films was significantly faster than the pure silk film. © 2020 Society of Industrial Chemistry  相似文献   
3.
As the formaldehyde is one of the main indoor pollutants, the purpose of this study is to effectively remove indoor formaldehyde pollution by using environmentally friendly 3D printing ornaments. The wood 3D printing filaments cellulose/polylactic acid composite (Cellu/P) was selected as the starting material, and 3-aminopropyltriethoxysilane (APTES) was used for chemical modification to obtain a series of cellulose composite materials with amino groups. The modified composite materials (APTES@Cellu/P) were characterized by Fourier transform infrared, X-ray diffraction, scanning electron microscope, energy dispersive spectroscopy, thermogravimetric analysis, and mechanical tests, and a formaldehyde removal experiment was performed. The feasibility of 3D printing was evaluated, and the process of 3D printing-functionalized customized ornaments was proposed, and then a school emblem was used for modeling, printing, and surface modification. Compared with the commercially traditional activated carbon, 3D printing-customized ornaments of APTES@Cellu/P material has a better formaldehyde removal effect, and can even avoid the secondary pollution that is common to the activated carbon.  相似文献   
4.
Neat poly (lactic acid) (PLA) and PLA/cassava bagasse (CB) composites were used to produce seedling tubes by extrusion and injection molding. The tubes were buried in simulated soil, and their biodegradation was investigated by weight loss, scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR). After 180 days, the composites' biodegradation was higher than neat PLA material, and the higher the CB content, the higher the biodegradation, which caused fissures and voids in the material. The biodegradation of PLA/CB composites increased the phosphorus content in the soil after 180 days. Composites of PLA with CB, an abundant agro-industrial residue in Brazil, are promising because they can reduce the environmental impact due to CB's proper destination, and the composites' costs and biodegradation are faster than pure PLA material. Both the faster biodegradation of the tube and the higher P content are advantageous for seedling tubes.  相似文献   
5.
Tissue engineering has been developed with the aim of improving the regeneration and recovery of impaired tissues and organs. Biodegraded scaffolds serve the aforementioned functions and can also be decomposed by means of metabolism. They have no biological toxicity and save patients from injuries by the second surgery, which makes biodegradable scaffolds a new development trend in the tissue engineering. In this study, the textile engineering and chemical crosslinking techniques are employed to produce biodegradable polyvinyl alcohol (PVA) hollow braids, serving as the tissue engineering scaffolds. The process involves two types of products, including the twisted yarns and hollow braids. The twist number of PVA twisted yarns is changed to form different PVA twisted yarns, which are then used to braided into hollow braids via the braiding technology. Therefore, the hollow braids are basically composed three types of PVA twisted yarns. Next, the surface observation, mechanical properties, and degradation of the products are then evaluated. The test results indicate that PVA twisted yarns exhibit the optimal mechanical properties when being twisted with 3 turns/inch. Any higher twist counts result in over twist in the twisted yarns. The optimal hollow braids are composed of PVA twisted yarns with a twist counts being 3 turns/inch. Afterwards, hollow braids are crosslinking with genipin, thereby obtaining greater mechanical strength of 23.6 N and higher decomposition rate of 0.8. The specified hollow braids are suitable for the use as tissue engineering scaffolds.  相似文献   
6.
Crosslinked poly(ester urethane)s and their acrylate derivatives based on trifunctional polycaprolactone and trifunctional aliphatic isocyanates were synthesized. Biodegradable scaffolds with uniform, controlled micron-scale porosity were fabricated with these materials. Mechanical and swelling properties of monolithic and microporous materials were studied. Cytotoxicity, hydrolytic, and enzymatic degradation and their effects on mechanical properties of the biodegradable scaffolds were investigated. The polymer degradation products were found not to be cytotoxic at moderate concentrations and to permit cell attachment and spreading. Degradation rates and mechanical properties could be tuned to desired performance criteria for a given application by adjusting crosslink density and the ratio of hard segment to soft segment. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48943.  相似文献   
7.
Maleated poly(lactic acid) (PLA-g-MA) was prepared through melt grafting of maleic anhydride onto a PLA backbone with the aid of a radical initiator. PLA-g-MA thus formed was incorporated into PLA/polyamide 11 (PA11) blends as a reactive compatibilizer. By morphological observation, it was assessed that PLA-g-MA lowered the interfacial energy and strengthened the interface between PLA and PA11. However, the compatibilized PLA/PA11 blends did not show significant improvement of impact strength compared with noncompatibilized PLA/PA11 blends. Measurements of the molecular weight and impact strength of PLAs compounded with various amounts of radical initiators revealed that decreased molecular weight of PLA by the radical initiator used for the preparation of PLA-g-MA is responsible for this unexpected result. To compensate the decrease of the molecular weight, a crosslinking agent was incorporated in the preparation step of PLA-g-MA. It was found that the crosslinking agent is effective in preventing the molecular weight reduction. As a result, the impact strength of the PLA/PA11 blend was enhanced to a great extent by the PLA-g-MA prepared with the crosslinking agent.  相似文献   
8.
To improve the interaction between cells and scaffolds, the appropriate surface chemical property is very important for tissue engineering scaffolds. In this work, the dopamine (DA) was first introduced into thermoplastic polyurethane (TPU) matrix to obtain TPU/DA nanofibers by electrospinning. Subsequently, the TPU@polydopamine (PDA) composite nanofibers with core/shell structure were fabricated by in situ polymerization of PDA. In comparison with TPU nanofibers, the uniformization of PDA coating layer on the surface of TPU/DA composite nanofibers significantly increased due to the addition of DA, which used as the active sites to guide the PDA particles accumulated along with the fiber direction. The hydrophilicity and water uptake ability of TPU@PDA composite nanofibers were larger than those of TPU nanofibers. The TPU@PDA composite nanofibers possess excellent comprehensive mechanical properties of high strength, stiffness, elasticity, and recoverability because of the hydrogen bonding occurrence between PDA and DA, as well as between PDA and TPU matrix. The attachment and viability of mouse embryonic osteoblasts cells (MC3T3-E1) cultured on TPU@PDA composite nanofibers were obviously enhanced compared with TPU nanofibers. Those results suggested that the modified TPU@PDA composite nanofibers have superior mechanical and biological properties, which promoting them potentially useful for tissue engineering scaffolds.  相似文献   
9.
The usage of cling wraps is emerging as an easy and cost-effective approach to protect fresh-cut fruits and vegetables from dust, whilst improving visual appeal on retail counters. This study focused on developing an alternate, protein-based packaging material as a food grade cling wrap for food packaging applications. Zein-based cling wraps were produced, and their physical and mechanical characteristics were evaluated and compared with conventionally used chitosan biopolymer films and commercial synthetic polymer films. Antioxidant potential of the prepared films was studied, and the effectiveness of the developed films as anti-browning cling wraps was evaluated using studies conducted on fresh-cut apple slices at ambient conditions. Anti-browning effects were in par with polymeric counterparts; however, zein cling wraps could better prevent weight loss in apple slices. Zein-based films can be adopted as biodegradable food grade cling wraps as an alternative to chitosan and synthetic polymeric materials.  相似文献   
10.
ABSTRACT

Fossil fuel resource is on the draining stage which leads to an increment in the cost of the petroleum products. Nowadays, research is focused on the development of environmental friendly lubricants which are derivatives of renewable sources. Inedible plant oil-driven bio-lubricants are environmentally friendly because they are non-hazardous, biodegradable, as well as there is no emission of toxic gases. This study involves the characterisations, advantages, as well as utilisation of inedible plant oil-driven bio-lubricants as an alternative for tribological applications. This report presents the status about the global lubricant market as well as potential outlook. Inedible plant oil-driven bio-lubricants bear high viscosity, high lubricity, and high viscosity index which can enhance the equipment service life and has the ability to carry high load and results in minimum amount of metal traces during combustion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号