首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39675篇
  免费   4144篇
  国内免费   2783篇
电工技术   1625篇
技术理论   2篇
综合类   3643篇
化学工业   6093篇
金属工艺   3560篇
机械仪表   1758篇
建筑科学   3424篇
矿业工程   1212篇
能源动力   2374篇
轻工业   1407篇
水利工程   1253篇
石油天然气   2246篇
武器工业   317篇
无线电   4786篇
一般工业技术   6851篇
冶金工业   1258篇
原子能技术   513篇
自动化技术   4280篇
  2024年   68篇
  2023年   737篇
  2022年   955篇
  2021年   1401篇
  2020年   1427篇
  2019年   1370篇
  2018年   1212篇
  2017年   1456篇
  2016年   1417篇
  2015年   1433篇
  2014年   2085篇
  2013年   2548篇
  2012年   2662篇
  2011年   2962篇
  2010年   2143篇
  2009年   2222篇
  2008年   2155篇
  2007年   2410篇
  2006年   2361篇
  2005年   1930篇
  2004年   1698篇
  2003年   1590篇
  2002年   1261篇
  2001年   1101篇
  2000年   993篇
  1999年   794篇
  1998年   629篇
  1997年   603篇
  1996年   521篇
  1995年   465篇
  1994年   368篇
  1993年   333篇
  1992年   280篇
  1991年   229篇
  1990年   192篇
  1989年   163篇
  1988年   114篇
  1987年   59篇
  1986年   33篇
  1985年   43篇
  1984年   42篇
  1983年   40篇
  1982年   36篇
  1981年   20篇
  1980年   9篇
  1979年   13篇
  1976年   4篇
  1975年   2篇
  1959年   6篇
  1951年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
In a narrow channel, the apparent relative viscosity of a suspension with finite-size particles is strongly dependent on its microscopic particle arrangement. Relative viscosity increases when suspended particles flow near the channel wall; thus, a suspension in a narrow channel does not always exhibit the same rheological properties even if the concentration is the same. In this study, we focus on the inertia and concentration of particles in a narrow channel and consider their effects on the microscopic particle arrangement and macroscopic suspension rheology. Two-dimensional pressure-driven suspension flow simulations were performed using a two-way coupling scheme, and normalized particle density distribution (PDD) were implemented to consider their particle arrangements. The results demonstrated that the velocity profiles for the particle suspension were changed by the Reynolds number and particle concentration because of the interactions between particles according to the power-law index. These changes affected the particle equilibrium positions in the channel, and the subsequent changes in solvent layer thickness caused changes in the macroscopic apparent viscosity. The behavior of microscopic particles played important roles in determining macroscopic rheology. Thus, we have confirmed that a normalized PDD can be used to estimate and assess the macroscopic rheology of a suspension.  相似文献   
2.
The ohmic resistance in solid oxide fuel cells (SOFCs) mainly comes from the electrolyte, which can be reduced by developing novel electrolyte materials with higher ionic conductivity and/or fabricating thin-film electrolytes. Among various kinds of thin-film fabrication technology, the physical vapor deposition (PVD) method can reduce the electrolyte thickness to a few micrometers and mitigate the issues associated with high-temperature sintering, which is necessary for wet ceramic methods. This review summarizes recent development progress in thin-film electrolytes fabricated by the PVD method, especially pulsed laser deposition (PLD) and magnetron sputtering. At first, the importance of the substrate surface morphology for the quality of the film is emphasized. After that, the fabrication of thin-film doped-zirconia and doped-ceria electrolytes is presented, then we provide a brief summary of the works on other types of electrolytes prepared by PVD. Finally, we have come to the summary and made perspectives.  相似文献   
3.
Gas diffusion layer (GDL) is one of the most important components of fuel cells. In order to improve the fuel cell performance, GDL has developed from single layer to dual layers, and then to multiple layers. However, dual or multi layers in GDL are usually prepared by layer-by-layer methods, which cost too much time, energy, and resources. In this work, we successfully developed a facile one-step method to prepare a GDL with three functional layers by utilizing the different sedimentation rates and filtration rates of short carbon fiber (CF) and carbon nanotube (CNT). The treatment temperature for this GDL is much lower than that of traditional method. The thickness of the GDL can be effectively controlled from as thin as 50 μm to more than 200 μm by simply adjusting the content of CF. The GDL with high flexibility is suitable to develop high performance flexible electronics. The fuel cell with the GDL has the maximum power density 1021 mW cm?2, which shows 19% improvement comparing to the conventional one. Therefore, this work breaks the traditional concept that GDL for fuel cells only can be prepared by very complex and high-cost procedure.  相似文献   
4.
The thermodynamics modeling of a Reiner–Philippoff-type fluid is essential because it is a complex fluid with three distinct probable modifications. This fluid model can be modified to describe a shear-thinning, Newtonian, or shear-thickening fluid under varied viscoelastic conditions. This study constructs a mathematical model that describes a boundary layer flow of a Reiner–Philippoff fluid with nonlinear radiative heat flux and temperature- and concentration-induced buoyancy force. The dynamical model follows the usual conservation laws and is reduced through a nonsimilar group of transformations. The resulting equations are solved using a spectral-based local linearization method, and the accuracy of the numerical results is validated through the grid dependence and convergence tests. Detailed analyses of the effects of specific thermophysical parameters are presented through tables and graphs. The study reveals, among other results, that the buoyancy force, solute and thermal expansion coefficients, and thermal radiation increase the overall wall drag, heat, and mass fluxes. Furthermore, the study shows that amplifying the space and temperature-dependent heat source parameters allows fluid particles to lose their cohesive force and, consequently, maximize flow and heat transfer.  相似文献   
5.
《Ceramics International》2022,48(11):14987-14992
The ceramic compound CaMoO4 is synthesized via a solid-state reaction technique. Rietveld refinement studies were done on the powder X-ray diffraction data of CaMoO4 and revealed that the compound is crystallized in the tetragonal Scheelite structure with I41/a space group. The differential scanning calorimetry (DSC) studies on CaMoO4 divulged an anomaly around 440 °C. This anomaly is further probed using the temperature-dependent Raman and dielectric spectroscopic measurements and are corroborating with the results obtained from DSC. A detailed investigation on the temperature-dependent Raman spectroscopic data revealed that the A1g mode of CaMoO4 showed a soft phonon behavior up to the phase transition temperature. It is observed that the A1g mode displayed phonon hardening behavior with further increasing the temperature. The anomaly is attributed to an isostructural phase transition (IPT), a rarely observed phenomenon in the compounds with Scheelite structure. The IPT in CaMoO4 is elucidated with a phonon softening mechanism.  相似文献   
6.
In the present work it is found that the pyrotechnic composition VS-2 can be initiated with flash lamps IFC-500 and EVIS. VS-2 pyrotechnic composition contains 90% of mercury(Ⅱ) 5-hydrazinotetrazolate perchlorate and 10% of optically transparent copolymer of 2-methyl-5-vinyltetrazole and methacrylic acid (PVMT). We have found that the flash lamps make it possible to initiate combustion of VS-2 composition with its transition to detonation both in cylindrical charges placed in brass caps of 5 mm diameter and 2 mm high, and film charges with 10 mm×80 mm in size and surface weights of 60 mg·cm-2 and 90 mg·cm-2, showing ignition delay times 10 μs and 3 μs, respectively. We also measured detonation velocities for VS-2 composition film charges, which were 4375-4505 m·s-1 (of the charge being surface mass 60 mg·cm-2) and 4221-4281 m·s-1 (of the charge being surface mass 90 mg·cm-2) and their blasting action on the aluminum plate. The depths of the normal shock wave imprints at the charge-barrier interface were 0.6-0.7 mm (for surface mass of the film charges 60 mg·cm-2) and 1.2-1.3 mm (for surface mass of the film charges 90 mg·cm-2).  相似文献   
7.
《Ceramics International》2022,48(8):10579-10591
In present study, we report a V doping fabrication method for obtaining rod-like MgO crystals decorated with a nanoflake layer. This novel structure has only been minimally reported in literature. Pure MgO and Mg2V2O7–MgO composite materials were obtained by precipitation and impregnation methods, with vanadium added concentrations of 0–9%. The influence of V doping on crystal structure and particle morphology of MgO was investigated by scanning electron microscopy (SEM). X-ray diffraction (XRD) analysis demonstrated that MgO has a cubic structure, while X-ray photoelectron spectroscopy (XPS) revealed that V5+ exists on the surface of MgO. The specific surface areas and pore sizes of MgO composites were calculated by BET and BJH analysis. These techniques revealed that specific surface area and pore size of MgO increased due to vanadium doping. The antibacterial effects of Mg2V2O7–MgO composite materials against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were assessed using a bacterial killing/colony-forming unit (CFU) assay and bacteriostatic ring method. Our results demonstrate that V doping dramatically improved antimicrobial properties of MgO, with 7 mol% doping inducing the best antibacterial activity. The antibacterial mechanisms of Mg2V2O7–MgO composite material were also proposed.  相似文献   
8.
Oxygen blocking the porous transport layer (PTL) increases the mass transport loss, and then limits the high current density condition of proton exchange membrane electrolysis cells (PEMEC). In this paper, a two-dimensional transient mathematical model of anode two-phase flow in PEMEC is established by the fluid volume method (VOF) method. The transport mechanism of oxygen in porous layer is analyzed in details. The effects of liquid water flow velocity, porosity, fiber diameter and contact angle on oxygen pressure and saturation are studied. The results show that the oxygen bubble transport in the porous layer is mainly affected by capillary pressure and follows the transport mechanism of ‘pressurization breakthrough depressurization’. The oxygen bubble goes through three stages of growth, migration and separation in the channel, and then be carried out of the electrolysis cell by liquid water. When oxygen breaks through the porous layer and enters the flow channel, there is a phenomenon that the branch flow is merged into the main stream, and the last limiting throat affects the maximum pressure and oxygen saturation during stable condition. In addition, increasing the liquid water velocity is helpful to bubble separation; changing the porosity and fiber diameter directly affects the width of pore throat and the correlative capillary pressure; increasing porosity, reducing fiber diameter and contact angle can promote oxygen breakthrough and reduce the stable saturation of oxygen.  相似文献   
9.
In this study, a three-dimensional model was established using the lattice Boltzmann method (LBM) to study the internal ice melting process of the gas diffusion layer (GDL) of the proton exchange membrane fuel cell (PEMFC). The single-point second-order curved boundary condition was adopted. The effects of GDL carbon fiber number, growth slope of the number of carbon fibers and carbon fiber diameter on ice melting were studied. The results were revealed that the temperature in the middle and lower part of the gradient distribution GDL is significantly higher than that of the no-gradient GDL. With the increase of the growth slope of the number of carbon fiber, the temperature and melting rate gradually increase, and the position of the solid-liquid interface gradually decreases. The decrease in the number of carbon fibers has a similar effect as the increase in the growth slope of the number of carbon fibers. In addition, as the diameter of the carbon fiber increases, the position of the solid-liquid interface gradually decreases first and then increases.  相似文献   
10.
《Ceramics International》2022,48(21):31995-32000
Among the existing material family of the correlated oxides, the rare earth nickelates (ReNiO3) exhibit broadly adjustable metal to insulator transition (MIT) properties that enables correlated electronic applications, such as thermistors, thermochromics, and logical devices. Nevertheless, how to accurately control the critical temperature (TMIT) of ReNiO3 via the co-occupation of the rare-earth elements is yet worthy to be further explored. Herein, we demonstrate the non-linearity in adjusting the TMIT of ReNiO3 towards lower temperatures via introducing Pr co-occupation within ReNiO3 (e.g., PrxNd1-xNiO3 and PrxSm1-xNiO3) as synthesized by KCl molten-salt assisted high oxygen pressure reaction approach. Although the TMIT is effectively reduced via Pr substitution, it does not strictly follow a linear relationship, in particular, when there is large difference in the ionic radius of the co-occupation rare-earth elements. Furthermore, the most significant deviation in TMIT from the expected linear relationship appears at an equal co-occupation ratio of the two different rare-earth elements, while the abruption in the variation of resistivity across TMIT is also reduced. The present work highlights the importance to use adjacent rare-earth elements with co-occupation ratio away from 1:1 for achieving more linear adjustment in designing the metal to insulator transition properties for ReNiO3.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号