首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4619篇
  免费   446篇
  国内免费   79篇
电工技术   11篇
综合类   356篇
化学工业   2109篇
金属工艺   44篇
机械仪表   14篇
建筑科学   23篇
矿业工程   16篇
能源动力   15篇
轻工业   1641篇
水利工程   5篇
石油天然气   57篇
无线电   50篇
一般工业技术   729篇
冶金工业   37篇
原子能技术   17篇
自动化技术   20篇
  2024年   20篇
  2023年   80篇
  2022年   113篇
  2021年   168篇
  2020年   135篇
  2019年   155篇
  2018年   133篇
  2017年   152篇
  2016年   141篇
  2015年   178篇
  2014年   199篇
  2013年   312篇
  2012年   436篇
  2011年   391篇
  2010年   296篇
  2009年   292篇
  2008年   239篇
  2007年   347篇
  2006年   334篇
  2005年   288篇
  2004年   166篇
  2003年   143篇
  2002年   116篇
  2001年   107篇
  2000年   67篇
  1999年   44篇
  1998年   25篇
  1997年   15篇
  1996年   13篇
  1995年   8篇
  1994年   5篇
  1993年   7篇
  1992年   6篇
  1991年   4篇
  1990年   2篇
  1989年   3篇
  1986年   1篇
  1984年   1篇
  1980年   1篇
  1951年   1篇
排序方式: 共有5144条查询结果,搜索用时 78 毫秒
1.
Hydrogels based on chitosan are very versatile materials which can be used for tissue engineering as well as in controlled drug delivery systems. One of the methods for obtaining a chitosan-based hydrogel is crosslinking by applying different components. The objective of the present study was to obtain a series of new crosslinked chitosan-based films by means of solvent casting method. Squaric acid—3,4-dihydroxy-3-cyclobutene-1,2-dione—was used as a safe crosslinking agent. The effect of the squaric acid on the structural, mechanical, thermal, and swelling properties of the formed films was determined. It was established that the addition of the squaric acid significantly improved Young’s modulus, tensile strength, and thermal stability of the obtained materials. Moreover, it should be stressed that the samples consisting of chitosan and squaric acid were characterized by a higher swelling than pure chitosan. The detailed characterization proved that squaric acid could be used as a new effective crosslinking agent.  相似文献   
2.
This study aimed to prepare an efficient, cost-effective, and separable magnetic zeolite/chitosan composite (MZFA/CS) adsorbent from solid waste to deal with the water pollution of Cr(VI). The MZFA/CS was characterized by X-ray fluorescence (XRF), Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), and vibrating sample magnetometer (VSM) techniques. Then, the effect of pH, temperature, initial concentration of Cr(VI) ions, and contact time was considered in the study. For a sorbent dose of 0.1 g in 50 mL of a Cr(VI) solution, at a contact time of 30 min, temperature of 30°C, and a pH of 3, an adsorption capacity (qe) of 16.96 mg g−1 was achieved. Adsorption kinetics and isotherm data obtained for all adsorption systems were well-fitted by pseudo-second-order and Langmuir models, respectively. The thermodynamic study suggested that the adsorption process is spontaneous and endothermic in nature. In summary, the adsorbent with better separability (Ms = 16.83 emu g−1) and adsorbability was successfully fabricated.  相似文献   
3.
以壳聚糖为原料,采用一步水热碳化和磺化法合成壳聚糖基固体酸材料(CASA),并将其用于催化无溶剂条件下果糖脱水合成5-羟甲基糠醛(5-HMF),考察了催化剂用量、反应温度、反应时间及催化剂循环利用次数对脱水反应的影响,并与甲壳素基固体酸材料(CISA)进行了催化性能比较。采用X射线衍射、扫描电镜、吡啶吸附红外光谱对CASA材料进行了结构和酸性质表征,建立了催化剂结构与性能的关系。结果表明,CASA材料含有大量的表面强Br?nsted酸性位点,因而其催化性能较CISA突出;当m(果糖)∶m(CASA)=6∶1、120℃反应5 h时,5-HMF的收率高达63.2%,且CASA可重复利用4次而无明显失活。  相似文献   
4.
海藻酸钠(sodium alginate,SA)是从褐藻或海藻中提取出来的聚阴离子电解质;壳聚糖(chitosan,CS)是通过甲壳素脱乙酰化获得的聚阳离子电解质。这两种物质都具有优异的生物相容性、良好的生物可降解性、抗菌性和伤口愈合活性。介绍了海藻酸钠/壳聚糖微囊的生物特性,制备方法及其在医学领域中的应用,并对其应用前景进行展望。  相似文献   
5.
6.
In this paper, we report methods for correction of selectivity of sorbents based on N-(2-sulfoethyl)chitosan towards platinum(IV) and palladium(II) in HCl solutions. The common method for correction of selectivity of the sorbents is variation of their modification degree with complexing groups. An increase in the degree of sulfoethylation of the chitosan leads to the significant increase in selectivity of sorption of palladium(II) over platinum(IV). Application of the N-(2-sulfoethyl)chitosan with the highest degree of sulfoethylation allows for selective separation palladium(II) from platinum(IV) (рН = 5.0). Palladium is quantitatively desorbed from the surface of the N-(2-sulfoethyl)chitosans by 3.5 mol/dm3 solution of HCl.  相似文献   
7.
赵海田  李旭东  曹凤芹  倪艳  姚磊 《化工进展》2019,38(11):5057-5065
壳聚糖纳米粒子载药体系因其天然无毒、生物相容性高、可生物降解等特点,在生物医学、化工和食品等领域有广阔的应用前景。本文对制备壳聚糖纳米粒子的离子交联法、聚电解质复合法、乳化交联法、喷雾干燥法和溶剂蒸发法等主要方法进行了综述,并阐述了其制备原理和优缺点。此外,本文结合国内外学者近期的研究工作,综述了壳聚糖纳米粒子载药体系在抗肿瘤药物和抑菌药物方面的应用研究进展,并对壳聚糖装载降糖药物、降脂药物、治疗骨质疏松药物和抗癫痫药物应用进行了简介。最后结合壳聚糖纳米载药体系在制备方法及应用中存在的实际问题,提出多学科研究相结合,开发壳聚糖纳米载药体系的智能控释、靶向递送功能和突破人体特殊生物屏障功能将是其近期的重点研究方向。  相似文献   
8.
Mucogingival surgery has become a common procedure for soft gingival tissue reparation in dental clinical practice, which mainly relies on autograft or commercial collagen membranes (CM). However, the autograft faces grand challenges in source availability and long-term post-surgery pain management, and the CM is restricted by its poor mechanical properties in an aqueous environment. Here, it is reported that a bio-inspired lamellar chitosan scaffold (LCS) with long range ordered porous structure, manufactured through a bidirectional freezing method, can serve as a promising gingival tissue engineering material. The LCS not only exhibits excellent mechanical properties in the hydrated state but also accelerates vessel formation and soft tissue regeneration in vivo. Most interestingly, the LCS is found to be capable of inducing macrophage differentiation to M2 macrophages, which is thought to play an important role in tissue regeneration. These advantages combined with its easy and low-cost preparation process make the LCS a promising candidate for dental clinical applications.  相似文献   
9.
Recently, thermosensitive chitosan systems have attracted the interest of many researchers due to their growing application potential. Nevertheless, the mechanism of the sol-gel phase transition is still being discussed, and the glycerophosphate salt role is ambiguous. The aim of the work is to analyze the possibility of the exclusive use of a non-sodium glycerophosphate salt and to determine its impact on the gelation conditions determined by rheological and turbidimetric measurements as well as the stability of the systems by measuring changes in the Zeta potential value. It was found that ensuring the same proportions of glycerophosphate ions differing in cation to amino groups present in chitosan chains, leads to obtaining systems significantly different in viscoelastic properties and phase transition conditions. It was clearly shown that the systems with the calcium glycerophosphate, the insoluble form of which may constitute additional aggregation nuclei, undergo the gelation the fastest. The use of magnesium glycerophosphate salt delays the gelation due to the heat-induced dissolution of the salt. Thus, it was unequivocally demonstrated that the formulation of the gelation mechanism of thermosensitive chitosan systems based solely on the concentration of glycerophosphate without discussing its type is incorrect.  相似文献   
10.
Objective: To develop an oral sustained release formulation of mycophenolate mofetil (MMF) for once-daily dosing, using chitosan-coated polylactic acid (PLA) or poly(lactic-co-glycolic) acid (PLGA) nanoparticles. The role of polymer molecular weight (MW) and drug to polymer ratio in encapsulation efficiency (EE) and release from the nanoparticles was explored in vitro.

Methods: Nanoparticles were prepared by a single emulsion solvent evaporation method where MMF was encapsulated with PLGA or PLA at various polymer MW and drug: polymer ratios. Subsequently, chitosan was added to create coated cationic particles, also at several chitosan MW grades and drug: polymer ratios. All the formulations were evaluated for mean diameter and polydispersity, EE as well as in vitro drug release. Differential scanning calorimetry (DSC), surface morphology, and in vitro mucin binding of the nanoparticles were performed for further characterization.

Results: Two lead formulations comprise MMF: high MW, PLA: medium MW chitosan 1:7:7 (w/w/w), and MMF: high MW, PLGA: high MW chitosan 1:7:7 (w/w/w), which had high EE (94.34% and 75.44%, respectively) and sustained drug release over 12?h with a minimal burst phase. DSC experiments revealed an amorphous form of MMF in the nanoparticle formulations. The surface morphology of the MMF NP showed spherical nanoparticles with minimal visible porosity. The potential for mucoadhesiveness was assessed by changes in zeta potential after incubation of the nanoparticles in mucin.

Conclusion: Two chitosan-coated nanoparticles formulations of MMF had high EE and a desirable sustained drug release profile in the effort to design a once-daily dosage form for MMF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号