首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   79417篇
  免费   8377篇
  国内免费   4772篇
电工技术   1958篇
综合类   6735篇
化学工业   11410篇
金属工艺   10615篇
机械仪表   9491篇
建筑科学   8766篇
矿业工程   2903篇
能源动力   1993篇
轻工业   6948篇
水利工程   2562篇
石油天然气   2441篇
武器工业   766篇
无线电   4697篇
一般工业技术   13176篇
冶金工业   3145篇
原子能技术   665篇
自动化技术   4295篇
  2024年   215篇
  2023年   1348篇
  2022年   1994篇
  2021年   2480篇
  2020年   2784篇
  2019年   2587篇
  2018年   2503篇
  2017年   3015篇
  2016年   2994篇
  2015年   3173篇
  2014年   4288篇
  2013年   5094篇
  2012年   5546篇
  2011年   5850篇
  2010年   4279篇
  2009年   4531篇
  2008年   4135篇
  2007年   5428篇
  2006年   4902篇
  2005年   4112篇
  2004年   3333篇
  2003年   2839篇
  2002年   2460篇
  2001年   2086篇
  2000年   1847篇
  1999年   1436篇
  1998年   1187篇
  1997年   1103篇
  1996年   951篇
  1995年   777篇
  1994年   643篇
  1993年   516篇
  1992年   449篇
  1991年   315篇
  1990年   313篇
  1989年   232篇
  1988年   207篇
  1987年   88篇
  1986年   98篇
  1985年   90篇
  1984年   93篇
  1983年   72篇
  1982年   71篇
  1981年   19篇
  1980年   30篇
  1979年   28篇
  1978年   4篇
  1975年   2篇
  1959年   7篇
  1951年   6篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
Chameleonic properties, i. e., the capacity of a molecule to hide polarity in non-polar environments and expose it in water, help achieving sufficient permeability and solubility for drug molecules with high MW. We present models of experimental measures of polarity for a set of 24 FDA approved drugs (MW 405-1113) and one PROTAC (MW 1034). Conformational ensembles in aqueous and non-polar environments were generated using molecular dynamics. A linear regression model that predicts chromatographic apparent polarity (EPSA) with a mean unsigned error of 10 Å2 was derived based on separate terms for donor, acceptor, and total molecular SASA. A good correlation (R2=0.92) with an experimental measure of hydrogen bond donor potential, Δlog Poct-tol, was found for the mean hydrogen bond donor SASA of the conformational ensemble scaled with Abraham's A hydrogen bond acidity. Two quantitative measures of chameleonic behaviour, the chameleonic efficiency indices, are introduced. We envision that the methods presented herein will be useful to triage designed molecules and prioritize those with the best chance of achieving acceptable permeability and solubility.  相似文献   
2.
《Ceramics International》2021,47(20):28557-28565
To reduce the energy consumption of cooling in the hot summer days, searching for novel NIR shielding materials for buildings is of great value. In this report, monodispersed F doped TiO2 nanocrystals with an average size of 8.6 nm were synthesized as novel solar shielding materials for energy-saving windows. All the products adopted an anatase TiO2 structure. After doping of F ions, the morphology of TiO2 was transformed from an irregular shape to a pseudospherical shape. The Raman shift and XPS depth analysis confirmed the successful doping of F ions into the lattice oxygen sites in the TiO2 structure. The introduction of F ions generated free electrons and bulk Ti3+ in TiO2 crystals, which activated a localized surface plasmon resonance (LSPR) absorption in the NIR region. Correspondingly, the NIR shielding performance of the TiO2 films improved with increasing F doping amounts. The NIR shielding value of the films increased from 1.3% to 43.2% when the molar ratio of F to Ti increased from 0 to 0.3. The reason can be attributed to the enhanced NIR absorption induced by the increased electron concentration after doping of fluorine ions. The F–TiO2 films showed superior visible transmittance (90.1–96.7%). Moreover, the F–TiO2 films lowered the indoor temperature of the heat box by 5.3 °C in the thermal tests. Overall, the prepared F–TiO2 nanocrystals show a great potential to be used for energy-saving windows.  相似文献   
3.
Diamond-like carbon (DLC) possesses brilliant and excellent properties, including excellent corrosion resistance as well as outstanding wear resistance. Ni and B co-doped DLC films were deposited on AZ91D magnesium alloy by electrodeposition under mild conditions (300 V and 25°C). Uniform and dense morphology of co-doped DLC films were observed, and Ni and B were uniformly incorporated into the carbon-based films. Among all the electrodeposits, the appearance of D and G peaks near 1330 and 1570 cm−1 revealed that the as-deposited films were typical DLC films. As the addition of Ni was increased to 0.05 g, the highest microindentation hardness, the lowest friction coefficient, and wear loss were achieved to be 164.5 HV, 0.3, and 0.6 × 10−5 kg/m, respectively. The amorphous carbon films fabricated at 0.05 g Ni had the lowest corrosion current density and the most positive corrosion potential, which was mainly due to the small and dense granular structure effectively hindering the penetration of corrosion media.  相似文献   
4.
5.
The effects of three types of salt including NaF, KCl, and NaCl on the properties of NiFe2O4 nanoparticles using salt-assisted solution combustion synthesis (SSCS) have been investigated. The synthesized powders were evaluated by SEM, TEM, FTIR, XRD, and VSM analysis. Also, the specific surface area (SSA), as well as size distribution and volume of the porosities of NiFe2O4 powders were determined by the BET apparatus. The visual observations showed that the intensity and time of combustion synthesis of nanoparticles have been severely influenced by the type of salt. The highest crystallinity was observed in the synthesized powder using NaCl. The SSA has also been correlated completely to the type of salt. The quantities of SSA was achieved about 91.62, 64.88, and 47.22 m2g-1 for the powders synthesized by KCl, NaCl, and NaF respectively. Although the magnetic hysteresis loops showed the soft ferromagnetic behavior of the NiFe2O4 nanoparticles in all conditions, KCl salt could produce the particles with the least coercivity and remanent magnetization. Based on the present study, the salt type is a key parameter in the SSCS process for the preparation of spinel ferrites. Thermodynamic evaluation also showed that the melting point and heat capacity are important parameters for the proper selection of the salt.  相似文献   
6.
Electroreduction of small molecules such as H2O, CO2, and N2 for producing clean fuels or valuable chemicals provides a sustainable approach to meet the increasing global energy demands and to alleviate the concern on climate change resulting from fossil fuel consumption. On the path to implement this purpose, however, several scientific hurdles remain, one of which is the low energy efficiency due to the sluggish kinetics of the paired oxygen evolution reaction (OER). In response, it is highly desirable to synthesize high-performance and cost-effective OER electrocatalysts. Recent advances have witnessed surface reconstruction engineering as a salient tool to significantly improve the catalytic performance of OER electrocatalysts. In this review, recent progress on the reconstructed OER electrocatalysts and future opportunities are discussed. A brief introduction of the fundamentals of OER and the experimental approaches for generating and characterizing the reconstructed active sites in OER nanocatalysts are given first, followed by an expanded discussion of recent advances on the reconstructed OER electrocatalysts with improved activities, with a particular emphasis on understanding the correlation between surface dynamics and activities. Finally, a prospect for clean future energy communities harnessing surface reconstruction-promoted electrochemical water oxidation will be provided.  相似文献   
7.
8.
Plant fiber reinforced polymer composites (PFRPs) in practical application are often subjected to both complex friction and variable temperature environments. The present work explores the possibility of reinforcing rice husk/polyvinyl chloride (RH/PVC) composites with basalt fibers (BF) for developing a new wear resistant material with improved thermal stability. The results showed that the structural strength and wear resistance of the composites increased at first and then decreased with an increasing ratio of BF/RH, the highest value occurred at a BF/RH ratio of 8/42. The thermal stability of composites had a positive relationship with BF/RH ratio. The composites added with BF all possessed improved performance in comparison with unadded composites. Hence, the findings of this article proposed some new perspectives on improving the wear resistance and thermal stability of PFRPs that would broaden their practical application.  相似文献   
9.
《Ceramics International》2021,47(18):25177-25200
Porous TiO2-based catalysts have recently received remarkable attention in the field of energy conversion systems, including hydrogen/oxygen evolution reaction, oxygen/nitrogen reduction reaction, and photodegradation of pollutants owing to their unique structure, large surface area, and good chemical stability. In this report, we review existing research on porous TiO2-based catalysts for energy conversion systems during the past four years. First, the advantages of porous TiO2-based catalysts are introduced. Next, the synthetic approaches in developing porous TiO2-based catalysts are summarized. The different types of energy conversion systems based on porous TiO2-based catalysts are then presented. Finally, the challenges and future perspectives in synthesizing porous TiO2-based catalysts are discussed.  相似文献   
10.
Cellulose nanocrystals (CNCs) are a kind of sustainable nanoparticle from biomass, which are widely used as reinforcing filler and assembly building block for high-performance composites and function materials including biomaterial, optics, and so forth. Here, their unique advantages in material applications were reviewed based on their rod-like morphology, crystalline structure, dimension-related effects, and multi-level order structure. Then, we focused on the molecular engineering of CNCs, including the structure and physicochemical properties of their surface, along with surface modification methods and steric effects. We further discussed the performance-improvement and functionalization methods based on multi-component complex systems, together with the effects of surface molecular engineering on the performance and functions. Meanwhile, methods of optimizing orientation in uniaxial arrays were discussed along with those of enhancing photoluminescence efficiency via surface chemical modification and substance coordination. In the end, we prospected the design, development, and construction methods of new CNCs materials.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号