首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16560篇
  免费   2530篇
  国内免费   2080篇
电工技术   1756篇
综合类   2882篇
化学工业   846篇
金属工艺   164篇
机械仪表   990篇
建筑科学   1718篇
矿业工程   188篇
能源动力   376篇
轻工业   154篇
水利工程   440篇
石油天然气   258篇
武器工业   222篇
无线电   2446篇
一般工业技术   2357篇
冶金工业   99篇
原子能技术   100篇
自动化技术   6174篇
  2024年   16篇
  2023年   252篇
  2022年   315篇
  2021年   365篇
  2020年   612篇
  2019年   556篇
  2018年   536篇
  2017年   687篇
  2016年   745篇
  2015年   656篇
  2014年   858篇
  2013年   1355篇
  2012年   1297篇
  2011年   1222篇
  2010年   933篇
  2009年   1032篇
  2008年   1071篇
  2007年   1266篇
  2006年   1052篇
  2005年   973篇
  2004年   779篇
  2003年   666篇
  2002年   558篇
  2001年   564篇
  2000年   530篇
  1999年   388篇
  1998年   314篇
  1997年   308篇
  1996年   237篇
  1995年   214篇
  1994年   173篇
  1993年   133篇
  1992年   124篇
  1991年   93篇
  1990年   74篇
  1989年   48篇
  1988年   31篇
  1987年   10篇
  1986年   14篇
  1985年   7篇
  1984年   17篇
  1983年   8篇
  1982年   15篇
  1981年   11篇
  1980年   17篇
  1979年   12篇
  1978年   12篇
  1977年   10篇
  1959年   1篇
  1951年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
梯度分层铝合金蜂窝板是一种有效的吸能结构,本工作在梯度铝蜂窝结构的基础上根据梯度率的概念,通过改变蜂窝芯层的胞壁长度,设计了4种质量相同、梯度率不同的铝蜂窝夹芯结构。通过准静态压缩实验,并结合非线性有限元模拟准静态及冲击态下梯度铝蜂窝夹芯结构的变形情况及其力学性能,分析对比了相同质量下梯度铝蜂窝夹芯结构在准静态下的变形模式以及冲击载荷下分层均质蜂窝结构和不同梯度率的分层梯度蜂窝结构的动态响应和能量吸收特性。结果表明:在准静态压缩过程中,铝蜂窝梯度夹芯板的变形具有明显的局部化特征,蜂窝芯的变形为低密度优先变形直至密实,层级之间的密实化应变差随芯层密度的增大而逐渐减小;在高速冲击下,梯度蜂窝板并非严格按照准静态过程中逐级变形直至密实,而是在锤头冲击惯性及芯层密度的相互作用下整体发生的线弹性变形、弹性屈曲、塑性坍塌及密实化;另外,在本工作所设计的梯度率中,当梯度率为γ1=0.0276时,梯度蜂窝夹芯板的吸能性达到最好,相较于同等质量下的均质蜂窝夹芯板,能量吸收提高了10.63%。  相似文献   
2.
This paper investigates PID control design for a class of planar nonlinear uncertain systems in the presence of actuator saturation. Based on the bounds on the growth rates of the nonlinear uncertain function in the system model, the system is placed in a linear differential inclusion. Each vertex system of the linear differential inclusion is a linear system subject to actuator saturation. By placing the saturated PID control into a convex hull formed by the PID controller and an auxiliary linear feedback law, we establish conditions under which an ellipsoid is contractively invariant and hence is an estimate of the domain of attraction of the equilibrium point of the closed-loop system. The equilibrium point corresponds to the desired set point for the system output. Thus, the location of the equilibrium point and the size of the domain of attraction determine, respectively, the set point that the output can achieve and the range of initial conditions from which this set point can be reached. Based on these conditions, the feasible set points can be determined and the design of the PID control law that stabilizes the nonlinear uncertain system at a feasible set point with a large domain of attraction can then be formulated and solved as a constrained optimization problem with constraints in the form of linear matrix inequalities (LMIs). Application of the proposed design to a magnetic suspension system illustrates the design process and the performance of the resulting PID control law.   相似文献   
3.
4.
The numerical solutions of the upper-convected Maxwell (UCM) nanofluid flow under the magnetic field effects over an inclined stretching sheet has been worked out. This model has the tendency to elaborate on the characteristics of “relaxation time” for the fluid flow. Special consideration has been given to the impact of nonlinear velocity slip, thermal radiation and heat generation. To study the heat transfer, the modified Fourier and Fick's laws are incorporated in the modeling process. The mass transfer phenomenon is investigated under the effects of chemical reaction, Brownian motion and thermophoresis. With the aid of the similarity transformations, the governing equations in the ordinary differential form are determined and then solved through the MATLAB's package “bvp4c” numerically. This study also brings into the spotlight such crucial physical parameters, which are inevitable for describing the flow and heat transfer behavior. This has been done through graphs and tables with as much precision and exactitude as is possible. The ascending values of the magnetic parameter, the Maxwell parameter and the angle of the inclined stretching sheet cause decay in the dimensionless velocity while an assisting behavior of the thermal and concentration buoyancy parameters is noticed.  相似文献   
5.
The Stefan column consists of liquid A evaporating into an inert/stagnant gas B with a sweeping B stream at the top. It was designed to estimate binary gas diffusivities, DAB’s, but “end effects” such as gas mixing at the top and interfacial curvature have been either ignored or uncorrelated to the operational settings. This study’s hypothesis is that gas mixing at the top and the gas–phase aspect ratio affect DAB estimation in the acetone (A)-ambient air (B) system at 50?°C. The sweeping stream Reynolds number (Re) and the gas–phase aspect ratio (AR?=?initial gas phase height to column internal diameter) were the variables tested. Isothermal evaporation-diffusion experiments were conducted in which the temporal interfacial descent was tracked. The settings were 492 ≤ Re ≤ 5378 and AR between 5 and 15. A 1D transport model allowed determination of the experimental diffusivity, DAB,exp, by nonlinear regression. For Re < 600, the DAB,exp errors relative to DAB,CE (predicted by the Chapman–Enskog kinetic theory for low-density gases) were small and unrelated to AR, while for Re > 600 the errors increased considerably with Re and were inversely proportional to AR. This study is the first to relate the column’s operational settings to the DAB estimation errors. The column should be operated at low sweeping gas Re and large AR for accurate DAB,exp’s. The low Re region deserves further study, while the present transport model may have to be replaced by computational fluid dynamics simulations to account for the multidimensional gas flow patterns.  相似文献   
6.
In this article, the issue of adaptive finite-time dynamic surface control (DSC) is discussed for a class of parameterized nonlinear systems with full state constraints. Using the property of logarithmic function, a one-to-one nonlinear mapping is constructed to transform a constrained system into an unconstrained system with the same structure. The nonlinear filter is constructed to replace the first-order linear filter in the traditional DSC, and the demand on the filter time constant is reduced. Based on finite-time stable theory and using modified DSC, the finite-time controller is designed via DSC. Theoretical analysis shows that all the signals in the closed-loop system are semiglobal practical finite-time stable. Furthermore, none of the states are outside the defined open set. In the end, simulation results are presented to demonstrate the effectiveness of the proposed control schemes with both linear filters and nonlinear filters.  相似文献   
7.
We investigate nonlinear phase dynamics of an ideal kink mode, induced by E × B flow. Here the phase is the cross phase(θ_c) between perturbed stream function of velocity■ and magnetic field ■, i.e. θ_c= θ_φ-θ_ψ. A dimensionless parameter, analogous to the Richardson number,■(γ_(kink): the normalized growth rate of the pure kink mode; ■: normalized E × B shearing rate) is defined to measure the competition between phase pinning by the current density and phase detuning by the flow shear. When R_i 1, θ_c is locked to a fixed value,corresponding to the conventional eigenmode solution. When R_i≤1, θ_c enters a phase slipping or oscillating state, corresponding to a nonmodal solution. The nonlinear phase dynamics method provides a more intuitive explanation of the complex dynamical behavior of the kink mode in the presence of E × B shear flow.  相似文献   
8.
通过金相试验方法测定42CrMo钢在890~930 ℃下保温10~240 min后的晶粒尺寸。结果表明,42CrMo钢在加热到试验温度890~930 ℃时已经完全奥氏体化,保温过程中的晶粒生长属于正常生长;加热温度对晶粒尺寸的影响较大,保温时间对晶粒尺寸的影响较小;随保温时间的延长晶粒生长缓慢,晶粒尺寸与保温时间满足指数小于1的函数关系。基于试验数据,通过线性回归得到晶粒长大的Beck模型参数,通过非线性回归得到Sellars和Anelli模型参数,3个模型的预测精度都较好,而Anelli模型的适用性要高于Beck模型和Sellars模型,故在预测42CrMo钢的奥氏体晶粒长大规律时宜使用Anelli模型。  相似文献   
9.
《Ceramics International》2022,48(6):8069-8080
Homogeneous thin films of Molybdenum oxide (MoO3) were grown on quartz and glass substrates using the thermal evaporation method. XRD results showed that the MoO3 powder has a polycrystalline structure with an orthorhombic crystal system whereas the MoO3 thin films have amorphous nature. SEM images showed that the MoO3 thin films have a nearly uniform surfaces with worm-like shape grains. The film thickness influences on the linear and nonlinear optical characteristics of MoO3 thin films that were examined using spectrophotometric measurements and from which, the linear optical constants of the MoO3 thin films were estimated. The electronic transition type was determined as a direct allowed one. The values of the optical band gap were obtained to be in the range of 3.88–3.72 eV. The dispersion parameters, third-order nonlinear optical susceptibility, and the nonlinear refractive index of the MoO3 thin films were determined and interpreted in the light of the single oscillator model. The temperature dependence of the DC electrical conductivity and the corresponding conduction mechanism for the MoO3 films were investigated at temperatures ranging from 303 to 463 K.  相似文献   
10.
Modal analysis is an important tool in the structural dynamics community; it is widely utilised to understand and investigate the dynamical characteristics of linear structures. Many methods have been proposed in recent years regarding the extension to nonlinear analysis, such as nonlinear normal modes or the method of normal forms, with the main objective being to formulate a mathematical model of a nonlinear dynamical structure based on observations of input/output data from the dynamical system. In fact, for the majority of structures where the effect of nonlinearity becomes significant, nonlinear modal analysis is a necessity. The objective of the current paper is to demonstrate a machine learning approach to output‐only nonlinear modal decomposition using kernel independent component analysis and locally linear‐embedding analysis. The key element is to demonstrate a pattern recognition approach which exploits the idea of independence of principal components from the linear theory by learning the nonlinear manifold between the variables. In this work, the importance of output‐only modal analysis via “blind source” separation tools is highlighted as the excitation input/force is not needed and the method can be implemented directly via experimental data signals without worrying about the presence or not of specific nonlinearities in the structure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号