首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   61849篇
  免费   6490篇
  国内免费   3467篇
电工技术   4535篇
综合类   5777篇
化学工业   11498篇
金属工艺   7769篇
机械仪表   3591篇
建筑科学   7398篇
矿业工程   2074篇
能源动力   2647篇
轻工业   3164篇
水利工程   2374篇
石油天然气   2339篇
武器工业   636篇
无线电   4575篇
一般工业技术   6987篇
冶金工业   2500篇
原子能技术   879篇
自动化技术   3063篇
  2024年   127篇
  2023年   1057篇
  2022年   1815篇
  2021年   2286篇
  2020年   2292篇
  2019年   1793篇
  2018年   1684篇
  2017年   2377篇
  2016年   2176篇
  2015年   2343篇
  2014年   3334篇
  2013年   3725篇
  2012年   4472篇
  2011年   4825篇
  2010年   3431篇
  2009年   3800篇
  2008年   3323篇
  2007年   3944篇
  2006年   3698篇
  2005年   3078篇
  2004年   2560篇
  2003年   2197篇
  2002年   1852篇
  2001年   1583篇
  2000年   1339篇
  1999年   1147篇
  1998年   918篇
  1997年   810篇
  1996年   671篇
  1995年   665篇
  1994年   548篇
  1993年   366篇
  1992年   333篇
  1991年   279篇
  1990年   230篇
  1989年   184篇
  1988年   135篇
  1987年   92篇
  1986年   64篇
  1985年   48篇
  1984年   40篇
  1983年   18篇
  1982年   35篇
  1981年   18篇
  1980年   27篇
  1979年   9篇
  1975年   4篇
  1965年   4篇
  1959年   8篇
  1951年   6篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
With the goal to produce a hard and tough coating intended for tribological applications, CrAlN/TiSiN nanolayer coating was prepared by alternative deposition of CrAlN and TiSiN layers. In the first part of the article, a detailed study of phase composition, microstructure, and layer structure of CrAlN/TiSiN coating is presented. In the second part, its mechanical properties, fracture and tribological behavior are compared to the nanocomposite TiSiN coating. An industrial magnetron sputtering unit was used for coating deposition. X-ray photoelectron spectroscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, scanning electron microscopy, and transmission electron microscopy were used for compositional and microstructural analysis. Mechanical properties and fracture behavior were studied by instrumented indentation and focused ion beam techniques. Tribological properties were evaluated by ball-on-disk test in a linear reciprocal mode. A complex layer structure was found in the nanolayer coating. The TiSiN layers were epitaxially stabilized inside the coating which led to formation of dislocations at interfaces, to introduction of disturbances in the coating growth, and as a result, to development of fine-grained columnar microstructure. Indentation load required for the onset of fracture was twice lower for the nanolayer CrAlN/TiSiN, compared to the nanocomposite TiSiN coating. This agrees very well with their mechanical properties, with H3/E2 being twice higher for the TiSiN coating. However, the nanolayer coating experienced less severe damage, which had a strong impact on tribological behavior. A magnitude of order lower wear rate and four times lower steady state friction coefficient were found for the nanolayer coating.  相似文献   
2.
Diamond-like carbon (DLC) possesses brilliant and excellent properties, including excellent corrosion resistance as well as outstanding wear resistance. Ni and B co-doped DLC films were deposited on AZ91D magnesium alloy by electrodeposition under mild conditions (300 V and 25°C). Uniform and dense morphology of co-doped DLC films were observed, and Ni and B were uniformly incorporated into the carbon-based films. Among all the electrodeposits, the appearance of D and G peaks near 1330 and 1570 cm−1 revealed that the as-deposited films were typical DLC films. As the addition of Ni was increased to 0.05 g, the highest microindentation hardness, the lowest friction coefficient, and wear loss were achieved to be 164.5 HV, 0.3, and 0.6 × 10−5 kg/m, respectively. The amorphous carbon films fabricated at 0.05 g Ni had the lowest corrosion current density and the most positive corrosion potential, which was mainly due to the small and dense granular structure effectively hindering the penetration of corrosion media.  相似文献   
3.
Ferrites are materials of interest due to their broad applications in high technological devices and a lot of research has been focused to synthesize new ferrites. In this regard, an effort has been devoted to synthesize spinel Pr–Ni co-substituted strontium ferrites with a nominal formula of Sr1-xPrxFe2-yNiyO4 (0.0 ≤ x ≤ 0.1, 0.0 ≤ y ≤ 1.0). The cubic structure of pure and Pr–Ni co-substituted strontium ferrite samples calcinated at 1073 K for 3 h has been confirmed through X-ray diffraction (XRD). Average sizes of crystallites (18–25 nm) have been estimated from XRD analysis and nanometer particle sizes of synthesized ferrites have been further verified by scanning electron microscopy (SEM). SEM results have also shown that particles are mostly agglomerated and all the samples possess porosity. It has been observed that at 298 K, the values of resistivity (ρ) increase, while that of AC conductivity, dielectric loss, and dielectric constants decrease with increasing amounts of Pr3+ and Ni2+ ions. The values of dielectric parameters initially decrease with frequency and later become constant and can be explained on the basis of dielectric polarization. Electrochemical impedance spectroscopy (EIS) studies show that the charge transport phenomenon in ferrite materials is mainly controlled via grain boundaries. Overall, synthesized ferrite materials own enhanced resistivity values in the range of 1.38 × 109–1.94 × 109 Ω cm and minimum dielectric losses, which makes them suitable candidates for high frequency devices applications.  相似文献   
4.
Understanding the mechanisms leading to the rise and dissemination of antimicrobial resistance (AMR) is crucially important for the preservation of power of antimicrobials and controlling infectious diseases. Measures to monitor and detect AMR, however, have been significantly delayed and introduced much later after the beginning of industrial production and consumption of antimicrobials. However, monitoring and detection of AMR is largely focused on bacterial pathogens, thus missing multiple key events which take place before the emergence and spread of AMR among the pathogens. In this regard, careful analysis of AMR development towards recently introduced antimicrobials may serve as a valuable example for the better understanding of mechanisms driving AMR evolution. Here, the example of evolution of tet(X), which confers resistance to the next-generation tetracyclines, is summarised and discussed. Initial mechanisms of resistance to these antimicrobials among pathogens were mostly via chromosomal mutations leading to the overexpression of efflux pumps. High-level resistance was achieved only after the acquisition of flavin-dependent monooxygenase-encoding genes from the environmental microbiota. These genes confer resistance to all tetracyclines, including the next-generation tetracyclines, and thus were termed tet(X). ISCR2 and IS26, as well as a variety of conjugative and mobilizable plasmids of different incompatibility groups, played an essential role in the acquisition of tet(X) genes from natural reservoirs and in further dissemination among bacterial commensals and pathogens. This process, which took place within the last decade, demonstrates how rapidly AMR evolution may progress, taking away some drugs of last resort from our arsenal.  相似文献   
5.
Antibiotic resistance is a growing problem for public health and associated with increasing economic costs and mortality rates. Silver and silver-related compounds have been used for centuries due to their antimicrobial properties. In this work, we show that 1,3-dibenzyl-4,5-diphenyl-imidazol-2-ylidene silver(I) acetate/NHC*-Ag-OAc (SBC3) is a reversible, high affinity inhibitor of E. coli thioredoxin reductase (TrxR; Ki=10.8±1.2 nM). Minimal inhibition concentration (MIC) tests with different E. coli and P. aeruginosa strains demonstrated that SBC3 can efficiently inhibit bacterial cell growth, especially in combination with established antibiotics like gentamicin. Our results show that SBC3 is a promising antibiotic drug candidate targeting bacterial TrxR.  相似文献   
6.
7.
Resistance to chemotherapy still remains a major challenge in the clinic, impairing the quality of life and survival rate of patients. The identification of unconventional chemosensitizing agents is therefore an interesting aspect of cancer research. Resveratrol has emerged in the last decades as a fascinating molecule, able to modulate several cancer-related molecular mechanisms, suggesting a possible application as an adjuvant in cancer management. This review goes deep into the existing literature concerning the possible chemosensitizing effect of resveratrol associated with the most conventional chemotherapeutic drugs. Despite the promising effects observed in different cancer types in in vitro studies, the clinical translation still presents strong limitations due to the low bioavailability of resveratrol. Recently, efforts have been moved in the field of drug delivery to identifying possible strategies/formulations useful for a more effective administration. Despite the necessity of a huge implementation in this research area, resveratrol appears as a promising molecule able to sensitize resistant tumors to drugs, suggesting its potential use in therapy-refractory cancer patients.  相似文献   
8.
Large interfacial resistance plays a dominant role in the performance of all-solid-state lithium-ion batteries. However, the mechanism of interfacial resistance has been under debate. Here, the Li+ transport at the interfacial region is investigated to reveal the origin of the high Li+ transfer impedance in a LiCoO2(LCO)/LiPON/Pt all-solid-state battery. Both an unexpected nanocrystalline layer and a structurally disordered transition layer are discovered to be inherent to the LCO/LiPON interface. Under electrochemical conditions, the nanocrystalline layer with insufficient electrochemical stability leads to the introduction of voids during electrochemical cycles, which is the origin of the high Li+ transfer impedance at solid electrolyte-electrode interfaces. In addition, at relatively low temperatures, the oxygen vacancies migration in the transition layer results in the formation of Co3O4 nanocrystalline layer with nanovoids, which contributes to the high Li+ transfer impedance. This work sheds light on the mechanism for the high interfacial resistance and promotes overcoming the interfacial issues in all-solid-state batteries.  相似文献   
9.
10.
在航空γ剂量率测量过程中由于海拔高度跨度大,γ射线空气衰减系数会受到海拔高度、温度、气压与空气密度的影响,故需要进行相应修正。利用蒙特卡罗(MCNP)法模拟γ射线在不同空气密度下的线衰减系数。利用经验公式计算不同海拔高度下的空气密度,利用MCNP法建立γ谱仪模型,计算不同海拔高度、不同密度条件下的γ光子注量,根据指数衰减原理计算不同空气密度下的线衰减系数。结果表明,由经验公式求出的空气密度模拟得出的空气质量衰减系数与美国NIST推荐值最大相对误差为-17.3%;在γ射线参考辐射场中用衰减板进行实验验证,60Co源的最大相对误差为6.0%,137Cs源的最大相对误差为5.3%。本工作为后续低空近地辐射剂量的研究工作奠定了基础。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号